RED BUS SERVICES PTY LTD

PRELIMINARY SITE INVESTIGATION TARGETED SOIL AND GROUNDWATER ASSESSMENT

OCTOBER 2022

Question today Imagine tomorrow Create for the future

PRELIMINARY SITE INVESTIGATION TARGETED SOIL AND GROUNDWATER ASSESSMENT

Red Bus Services Pty Ltd

WSP

Level 3, 51-55 Bolton St Newcastle NSW 2300 PO Box 1162 Newcastle NSW 2300

Tel: +61 2 4929 8300 Fax: +61 2 4929 8382

wsp.com

REV	DATE	DETAILS
Rev A	6/12/2021	Draft
Rev B	17/12/2021	Draft
Rev C	14/03/2022	Final
Rev D	04/10/2022	Final – DPE propose site rezoning, Council request changes in report, changes addressed in this revision.

	NAME	DATE	SIGNATURE
Prepared by: Jess Watson/Richie Lamont		04/10/2022	Rfore
Reviewed by:	Adrian Heggie Accreditation No SC40942	04/10/2022	a. c skyrie
Approved by:	Adrian Heggie	04/10/2022	a. c veggie

This document may contain confidential and legally privileged information, neither of which are intended to be waived, and must be used only for its intended purpose. Any unauthorised copying, dissemination or use in any form or by any means other than by the addressee, is strictly prohibited. If you have received this document in error or by any means other than as authorised addressee, please notify us immediately and we will arrange for its return to us.

TABLE OF CONTENTS

ABBF	REVIATIONSI	
EXEC	CUTIVE SUMMARY	0
1	PROJECT BACKGROUND	2
1.1	BACKGROUND	2
1.2	OBJECTIVES	2
1.3	SCOPE	2
2	SITE INFORMATION	4
2.1	SITE DESCRIPTION	4
2.2	SITE LAYOUT AND OPERATIONS	4
2.3	SURROUNDING LAND USES	5
3	SITE HISTORY	6
3.1	HISTORICAL AERIAL PHOTOGRAPHS	6
3.2	PUBLIC DATABASE SEARCH	7
3.2.1 3.2.2	SITE NOTIFICATIONS CONTAMINATED LAND DATABASE SEARCH	
3.2.3	SAFEWORK NSW	
3.3	ENVIRONMENTAL SETTING	7
3.3.1 3.3.2	GEOLOGYHYDROGEOLOGY	
4	PREVIOUS INVESTIGATIONS	9
5	SAMPLING, ANALYSIS AND QUALITY PLAN1	0
5.1	DATA QUALITY OBJECTIVES1	0
5.2	SAMPLING AND ANALYSIS PLAN1	1
5.3	DATA QUALITY ASSURANCE1	3
6	SITE ASSESSMENT CRITERIA1	6
6.1	SOIL CRITERIA 1	6
6.2	GROUNDWATER ASSESSMENT CRITERIA1	7

7	RESULTS AND DISCUSSION	.19
7.1	FIELD OBSERVATIONS	19
7.2	SOIL ANALYTICAL RESULTS	19
7.3	GROUNDWATER MONITORING	19
7.4	GROUNDWATER CONDITIONS	19
7.5	GROUNDWATER ANALYTICAL RESULTS	20
7.6	QUALITY ASSURANCE/QUALITY CONTROL	20
7.6.1 7.6.2 7.6.3	FIELD RESULTSLABORATORY RESULTSQUALITY STATEMENT	22
8	CONCEPTUAL SITE MODEL	.23
8 8.1	CONCEPTUAL SITE MODEL	
		23
8.1	SOURCE IDENTIFICATION CONTAMINANT TRANSPORT AND EXPOSURE	23
8.1 8.2	SOURCE IDENTIFICATION CONTAMINANT TRANSPORT AND EXPOSURE PATHWAYS	23 23 23
8.1 8.2 8.3	SOURCE IDENTIFICATION	23 23 23 .25

LIST OF APPENDICES

Appendix A Figures

Appendix B Photographic Log

Appendix C Historical Aerial Photographs

Appendix D Results Tables

Appendix E QAQC tables

Appendix F Borelogs

Appendix G Calibration Certificates

Appendix H Laboratory Certificates

ABBREVIATIONS

>C₆–C₁₀ Light petroleum hydrocarbon chain fraction (for example petrol)

>C₁₀-C₁₆ Medium petroleum hydrocarbon chain fraction (for example jet fuel, kerosene, diesel)

>C₁₆-C₃₄ Medium-heavy petroleum hydrocarbon chain fraction (for example diesel, lube oils)

>C₃₄-C₄₀ Heavy petroleum hydrocarbon chain fraction (for example lube oils, waxes)

μg/L Micrograms per litre

ANZECC Australian and New Zealand Environment and Conservation Council

ARMCANZ Agriculture, and Resource Management Council of Australia and New Zealand

BTEX Benzene, toluene, ethylbenzene and xylene

BTEXN Benzene, toluene, ethylbenzene, xylene and naphthalene

CoPCs Contaminants of potential concern

CRC CARE Cooperative Research Council for Contamination Assessment and Remediation of the Environment

CSM Conceptual Site Model

DQO Data quality objective

GME Groundwater monitoring event

HSL Health screening level

LNAPL Light non-aqueous phase liquid

mAHD Metres in Australian Height Datum

mBGL Metres below ground level

mg/L Milligrams per litre

mg/kg Milligrams per kilogram

NATA National Association of Testing Authorities

NEPM National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013)

NHMRC National Health and Medical Research Council

NRMMC National Resource Management Ministerial Council

PAHs Polycyclic aromatic hydrocarbons

ppm Parts per million

PQL Practical quantitation limit

RPD Relative per cent difference

SWL Standing water level

TRH Total recoverable hydrocarbons

EXECUTIVE SUMMARY

This report presents the findings of a preliminary site investigation (PSI) with targeted soil sampling and groundwater monitoring at Red Bus Services Pty Ltd (Red Bus) at 682a The Entrance Road, Bateau Bay (the site).

Red Bus is looking to cease operations as a bus depot and maintenance facility at the site within the next two years, with Red Bus planning on having the site rezoned from the current zoning of SP2 Infrastructure – Road and Traffic Facility to R1 – General Residential in keeping with the surrounding properties to the north and south. The site currently contains several buildings including administration, caretakers residential dwelling, workshops and storage, internal roads and car parking along with a dam.

The scope of the ESA included a desktop assessment and the advancement of ten soil boreholes and monitoring of existing onsite groundwater wells.

Concentrations of benzene, toluene, ethylbenzene, xylene and naphthalene (BTEXN), tola recoverable hydrocarbons (TRHs) and polycyclic aromatic hydrocarbons (PAHs) were below adopted assessment criteria in soil. Concentrations of metals were below the adopted assessment criteria with the exception of nickel at two locations. The concentrations were above the ecological criteria, however WSP considers the detection of nickel to be negligible risk to the ecological receptors due to current and future usage of the site and lack of significant ecological population requiring protection on site.

Groundwater flow direction is confirmed to be towards the north. Concentrations of benzene, toluene, ethylbenzene and xylene (BTEX) and volatile organic compounds (VOCs) were below adopted assessment criteria in groundwater; however, it is noted that TRHs exceeded the adopted assessment criteria for HSL A & B (re: potential vapour intrusion risk) in groundwater wells located in the bowser area and immediately to the north. The groundwater results show that the impact is from diesel and as such, vapour risks should be minimal or negligible. However, diesel in groundwater presents, partially in F2 C_{10} - C_{16} TRH fraction and there were several wells exceeding the F2 criterion. This uncertainty can be resolved through soil vapour measures.

The identified concentrations are not considered to pose a risk to human health in the current site condition as the area is well ventilated and covered in concrete or asphalt hardstand unless site excavations are undertaken. On account of the exceedances of criteria relating to vapour intrusion risk arising from hydrocarbons in groundwater WSP considers that there is a possible risk to future residential receptors in the case of redevelopment of the site. This could be mitigated with additional groundwater and soil vapour assessment within the impacted area to aid in determining the potential risk to human health, and if required the development of a remedial action plan (RAP) and/or site management plan (SMP). Concentrations of metals exceeded the ecological freshwater criteria for of copper, mercury and zinc and recreational water for arsenic. These concentrations are not considered relevant for the site given the intension of redevelopment for residential land use.

WSP considers site suitable for continued commercial/industrial use, though prior to any redevelopment, it is recommended that further assessment of groundwater and vapour intrusion be undertaken with relevance to human health of the proposed development. It is noted that the consent authority for a development application or an application for rezoning of land must consider, amongst other things, whether the land is contaminated and whether the land is suitable for the proposed use.

1 PROJECT BACKGROUND

1.1 BACKGROUND

WSP Australia Pty Ltd (WSP) was engaged by Progressive Property Solutions (PPS) on behalf of Red Bus Services Pty Ltd to conduct a preliminary site investigation (PSI) with targeted soil sampling and groundwater monitoring at 682a The Entrance Road, Bateau Bay (the site), presented in Figure 1 of Appendix A.

WSP understands that the PSI is required for due diligence purposes as Red Bus Services is planning to cease operations at the site, with Central Coast Council requiring a PSI prior to the lodgement of a Request to Amend a Local Environment Plan. The primary project objective is to identify and assess potential environmental contamination risks at the site in the context of its proposed closure and its intended redevelopment.

A previous diesel leak identified in November 2001, occurred due to failure of an in-ground pump component, with an estimate loss of product of 16 to 20 kilolitres (kL) with a worst case of 35 kL. Remediation including vacuum truck and active skimmer system was utilised from 2002 to 2012.

The investigation was undertaken in general accordance with WSP's proposal, which was accepted by Red Bus Services on 7 September 2021.

1.2 OBJECTIVES

The objective of the PSI assessment was to assess the presence and extent of potential hydrocarbon contamination at the site. The assessment was required to generally comply with the *National Environment Protection (Assessment of Site Contamination) Measure 1999* (NEPM; as amended 2013), to evaluate the site with respect to:

- the site's suitability for ongoing commercial land use;
- the potential site suitability for rezoning for general residential land use; and
- the extent of known contamination in soil and groundwater relating to the storage of diesel and associated products on the site.

1.3 SCOPE

The following scope of work was completed in the preparation of this document:

- a desktop study of the site to gather the following information:
 - Property details and location;
 - Current and proposed land use, site zoning and environmental planning controls;
 - Physical site setting, including geology and hydrogeology, mine subsidence, acid sulfate soils, topography and local and regional soil types and landscapes;
- A review of historical site documentation including:
 - Current and former use of the site;
 - Historical aerial photographs;
 - NSW Environmental Protection Authority (EPA) records including the notified sites register, records of regulated sites and environmental protection licences;

- Bore records held by the NSW Department of Industry;
- The completion of a site inspection;
- The completion of an intrusive investigation consisting of 10 boreholes; and
- Groundwater monitoring and sampling of existing groundwater wells.

2 SITE INFORMATION

2.1 SITE DESCRIPTION

Details of the site location, ownership, zoning and current site use are provided in Table 2.1 below.

Table 2.1 Site Details

Site address	682a The Entrance Road, Bateau Bay
Legal description	Lot 3 in DP716082
Size	Approximately 5.2 ha
Current use	Bus depot, including service and maintenance
Zoning	SP2 Infrastructure – Road and Traffic Facility
Local planning instrument	Wyong Local Environment Plan 2013

2.2 SITE LAYOUT AND OPERATIONS

WSP undertook a site inspection on 5 October 2021, with observations of the current site condition described in Table 2.2.

Table 2.2 Site conditions and observations

Topography	The site slopes down from the east to the west. The easterly portion steeply sloped, with an approximate gradient of 25%, with the site becoming flat, with areas for car and bus parking and maintenance, with another steep slope in the middle portion of the site, with the site sloping more gently towards the west and Coleridge Road.
Site conditions	The eastern portion of the site is grassed on the slope with asphalt or concrete hardstand with five large metal buildings utilised for maintenance, one small metal building utilised for chemical storage along with a small brick building utilised as a break/washroom, all buildings were in good condition. The car park and bus parking areas were asphalted, with the car park in good condition and the bus parking area having minor potholing through the area. The grassed area to the west was in good condition. There were two brick buildings, residential and the site office, both were in good condition. The road through the site was asphalted and in good condition.
Visual signs of contamination	There were no significant signs of contamination, with some oil stains throughout the bus parking area.
Presence of drums or waste	There were drums present within the site except for 205 L drums utilised for chemical/petroleum product storage. There was no visual evidence of leaks. There was no evidence of waste apart from a stack of bus tyres.
Odours	There were no noticeable odours within the site.

Evidence of current or former petroleum faculties	The site had three ASTs. Two were utilised for diesel with capacities of 90,820 L and 45,000 L, with the other one utilised for Adblue® with a safe fill level of 6,700 L. There were two bowsers on either side of the Adblue® AST.
Chemicals stored on-site	There were cleaning chemicals and paints stored in a dedicated chemical storage building. Other chemicals observed were stored in a dedicated area of the buildings or work area.
Evidence of waste burial	There was no evidence of any waste being buried during the inspection.
Visible signs of plant stress	There were no visible signs of any plant stress during the inspection.

2.3 SURROUNDING LAND USES

The site is located within a predominantly low-density residential area. Adjacent land uses include:

- North: low-density residential dwellings, along with roads and Coleridge Reserve.
- East: Water storage facility on the north eastern portion of the site and Wyrrabalong National Park.
- South: Residential, along with roads and Wyrrabalong National Park.
- West: Residential, roads including The Entrance Road (Central Coast Highway and vacant undeveloped land).

It is considered unlikely that adjacent land uses would pose a contamination risk.

3 SITE HISTORY

3.1 HISTORICAL AERIAL PHOTOGRAPHS

WSP reviewed historical aerial photographs and Table 3.1 summarises the observations at the site and surrounding environment.

Table 3.1 Historical Aerial Photographs

1966 – B&W	The site appears to be vacant with no visible sit activities. The site appears to have minimal vegetation, which may have been cleared for a future development.
	The surrounding land appears to be a mix of undeveloped bushland, semirural and residential properties.
1976 - Colour	The site appears to be some type of quarry, with serval buildings on the western portion of the site. There appears to be several unpaved roads, with most of the site cleared of vegetation.
	The area to the north is partially developed with residential properties. The area to the east is undeveloped bushland. The area to the south appears to have scattered residential dwellings along with undeveloped bushland. The area to the west appears to be residential, then rural properties and undeveloped land.
1984 – B&W	The site appears to be a bus depot, with a paved road from the entrance off Coleridge Road to a large paved area with several large buildings and buses in the east central portion of the site. There appears to be a small paved area, car park, in the northern portion of the site, with a large unpaved area directly to the east of the car park. There appear to be several buildings in the western portion of the site, potentially residential.
	The area to the north appears to have more residential properties. The area to the north east appears to have a large water storage facility. The area appears to have significant more vegetation that the previous photograph. The area to the south west appears to have more residential properties. The area to the west has changed little since the previous photograph.
1996 - Colour	The site has not change significantly, with a dam visible west of the main paved area. There appears to be more vegetation, including large trees.
	No observed changes to the surrounding area since the previous aerial photograph.
2004 - Colour	The site has changed little since the previous photograph, with the exception the previously unpaved area east of the car park now appearing to be paved.
	The areas to the north, east and south have changed little, with additional residential dwellings to the south west of the site, on the western side of The Entrance Road. The area to the north west appears to have a roundabout on The Entrance Road, with a road into residential subdivision.
2014 - Colour	The site has changed little since the previous photograph.
	No observed changes to the surrounding area since the previous photograph, except for what the development of a sporting field with car park to the west.
2021 - Colour	No observed changes to the site since the previous aerial photograph.

No observed changes to the surrounding area since the previous photograph.

3.2 PUBLIC DATABASE SEARCH

3.2.1 SITE NOTIFICATIONS

WSP undertook a search of the Department of Agriculture, Water and the Environment heritage register on 20 October 2021, and identified that there are no Aboriginal Places or items on the State Heritage Register within the vicinity of the site.

3.2.2 CONTAMINATED LAND DATABASE SEARCH

A search of the NSW EPA Contaminated Sites database (www.epa.nsw.gov.au/prclmapp/searchregister), conducted 20 October 2021, indicated that the site is not currently registered on the list of sites notified to NSW EPA, or currently regulated by the NSW EPA as a contaminated site. There are two sites within the suburb of Bateau Bay that are listed as notified:

- Former landfill, The Entrance Road, with contamination currently regulated under CLM Act; and
- Woolworths Service Station Bateau Bay, 9 Bay Village Road, with regulation under CLM Act not being required.

WSP undertook a search of the NSW EPA public lands register and did not find any record of Environment Protection licences, applications, notices, audits or pollution studies and reduction programmes applicable to the site. There is one licenced site within the suburb of Bateau Bay, that being Bateau Bay Sewage Treatment Plant.

3.2.3 SAFEWORK NSW

WSP undertook a SafeWork NSW search on 20 September 2021. In summary:

- One above ground diesel storage tank, with a capacity of 55,000 L (Class C1);
- One underground petrol tank, with a capacity of 12,000 L (Class 3);
- One above ground engine oil storage tank, with a capacity of 3,000 L; and
- One roofed store, with a capacity of 500 L (Class 3);

3.3 ENVIRONMENTAL SETTING

3.3.1 GEOLOGY

The NSW Planning and Environment state wide seamless geological map

(https://minview.geoscience.nsw.gov.au/#/?l=&lat=148.9143431&lon=-32.6560775&z=6&bm=bm1 — accessed 27 October 2021) indicates that the regional geology underlying the majority of the site is characterised by coastal deposits of mantled dune facies. The material is indurated marine deposits and aeolian reworked fine to coarse grained lithic sand with abundant carbonate, sporadic humic debris in stabilised dunes. The western edge of the site is Gosford Subgroup, including Mangrove Sandstone, Ourimbah Sandstone and Wyong Sandstone, with it being interbedded laminite, shale and fine to coarse grained quartz to quartz lithic sandstone, with minor red clays.

The soil landscape as identified in NSW OEH eSPADE (online access to land and soil information primarily sourced from the NSW Soil and Land Information System (SALIS) (https://www.environment.nsw.gov.au/espade2webapp – accessed September 2021), is that of a disturbed terrain. This terrain is typified by a highly variable soil profile. The attributes associated with this profile are therefore also highly variable.

The site slopes down from the east to the west. The easterly portion steeply sloped, with an approximate gradient of 25%, with the site becoming flat, with areas for car and bus parking and maintenance, with another steep slope in the middle portion of the site, with the site sloping more gently towards the west and Coleridge Road.

3.3.2 HYDROGEOLOGY

The nearest surface water body is a potential man-made dam approximately 330 m south and the South Pacific Ocean approximately 650 m east of the site.

Groundwater flow direction is thought to be north, based on previous groundwater monitoring events at the site.

A review of the Department of Primary Industries registered groundwater bore database (https://realtimedata.waternsw.com.au/water.stm) conducted on 20 October 2021 did not identify any registered groundwater bores within a 500 m radius of the site. However, it is known that there are groundwater monitoring wells within the site.

4 PREVIOUS INVESTIGATIONS

A groundwater sampling and site assessment report was undertaken by Parsons Brinckerhoff at the site in 2012 to assess the current contamination status of groundwater at the site. The groundwater had previously been contaminated in 2001 after an underground petroleum storage system (UPSS) released diesel into the groundwater. A product recovery system was installed at the site 2002, with the remediation system having been decommissioned and removed prior to the assessment.

The scope of works included review of previous site data, sampling of groundwater from accessible on-site monitoring wells, analysis of samples for contaminants of concern, total petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene and xylene (BTEX) and lead and preparation of a report. Twenty three wells were sampled, with groundwater depths approximately 8.5m below ground level (BGL). Groundwater flow is thought to be to the north west.

Phase separated hydrocarbons (PSH) were detected in one well (MW27) with a thickness of 10.1 cm, with hydrocarbon sheen and odours noted in 11 of the monitoring wells.

Based on filed observations and analytical results, the groundwater contaminant plume appeared to be centred near the diesel bowsers within the refuelling bay. The plume has been delineated to the south and west, but not to the north or the east.

It was considered that there was no unacceptable risk to commercial site users, or maintenance workers in shallow trenches on site as TPH C_6 - C_{10} was lower than the adopted HSLs. Given the distance to the nearest down gradient surface water receptor (1 km north west), the immediate risk to the receptor was considered low, though the plume did appear to be migrating.

While the presence of PSH and dissolved phase impacts were identified, it was considered that the site does not pose an unacceptable risk to current receptors, the NSW DEC "Guidelines for the Assessment and Management of Groundwater Contamination" states that non-aqueous phase liquids (NAPLs) in contact with groundwater constitute groundwater contamination and must be removed or treated as much as practicable.

5 SAMPLING, ANALYSIS AND QUALITY PLAN

5.1 DATA QUALITY OBJECTIVES

This section describes the process used in the planning of the sampling and remediation works to ensure that the best approach was taken with regard to the selected methodologies and sampling plans.

The National Environment Protection (Assessment of Site Contamination) Measure 1999 (NEPM; as amended 2013) Schedule B2, Guideline on Site Characterisation, describes a data quality objectives (DQO) process. Essential components of the DQO process include:

- a statement of pre-determined DQOs for field and laboratory procedures, including quantitative DQOs;
- a plan to achieve pre-determined DQOs; and
- procedures to be undertaken if the data do not meet the expected DQOs.

Systematic planning is critical for the successful implementation of an environmental assessment and is used to define the type, quantity and quality of data needed to inform decisions. The United States Environmental Protection Agency has defined a process for establishing data quality objectives (DQOs); this is referenced in the *National Environmental Protection (Assessment of Site Contamination) Amendment Measure 1999* (NEPM, as amended 2013).

The DQO process is a seven-step iterative planning approach. The outputs of the DQO process are qualitative and quantitative statements which are developed in the first six steps. They define the purpose of the data collection effort, clarify what the data should represent to satisfy this purpose and specify the performance requirements for the quality of information to be obtained from the data. The output from the first six steps is then used in the seventh step to develop the data collection design that meets all performance criteria and other design requirements and constraints. The DQO process adopted for the assessment and validation works is outlined in Table 5.1.

Table 5.1 DQO Process

STEP	DESCRIPTION	OUTCOME
1	State the problem	Phase separated hydrocarbon contamination in groundwater has been historically identified at the site, since a leak was identified in UPSS infrastructure in 2001. The preliminary site investigation is required to facilitate the lodgement of a "Request to Amend a Local Environmental Plan", and to determine the contamination status of the site.
2	Identify the decisions/goal of the investigation	The goals of the investigation are to confirm the presence and extent of groundwater and soil impacts at the site.
3	Identify the inputs to the decision	The inputs required to make the above decisions include: — Information obtained as part of the desktop study; — Historical concentrations of contaminants detected in soil and groundwater in wells located near the bowsers and directly north of the ASTs; — Relevant assessment criteria for soil and groundwater;

STEP	DESCRIPTION	OUTCOME
4	Define the study boundaries/constraints on data	 The boundaries of the investigation include: spatial boundaries – defined as the geographical extent of the investigation area (as shown on figures in Appendix A); and temporal boundaries – defined as the date of the project inception to the completion of the fieldwork under the proposed investigation plan.
5	Develop a decision rule - The purpose of this step is to define the parameters of interest, specify the action levels and combine the outputs of the previous DQO steps into an 'ifthen' decision rule that defines the conditions that would cause the decision maker to choose alternative actions.	The parameters of interest are concentrations of contaminants of concern in soil and groundwater. An assessment of the concentrations of the contaminants of concern is to be undertaken to complete the site investigation and the suitability for continued commercial land use or for rezoning for general residential land use. The null hypothesis, H ₀ is that the site or decision area is not suitable for the residential land use i.e. That the groundwater and/or soil is contaminated. The alternative hypothesis (HA), is that the site or decision area is suitable for residential land use i.e. That the soil and groundwater and/or soil is not contaminated. In summary, if concentrations of contaminants of concern exceed the adopted assessment criteria in soil and/or groundwater, then further investigation and/or remedial options will need to be considered.
6	Specify limits on decision errors –	The two decision errors are as follows: — Type 1 error: the site is considered not to be contaminated when it actually is; and — Type 2 error: the site is considered contaminated when it is not.
7	Optimise the design for obtaining data - The purpose of this step is to identify a resource-effective data collection design for generating data that satisfies the DQOs.	A targeted sampling pattern has been adopted in this investigation, as the inferred extent of contamination is understood from data collected by Parsons Brinckerhoff (2012). Criteria used to evaluate analytical data are not threshold values at which an environmental problem is likely to occur. Rather, if the trigger values are exceeded, further action is required which may include additional site-specific assessment to determine if there is a risk or whether management/remedial action should be undertaken.

5.2 SAMPLING AND ANALYSIS PLAN

Soil sampling density was determined on a targeted approach, with six locations to be placed around the above ground storage (AST), with an additional four locations place around the site. A total of 10 intrusive soil sampling locations were proposed to be advanced by a track mounted drill rig to provide assessment of the site.

34 historical groundwater wells were reported to have been located within the site, with the last known groundwater monitoring event in 2012 identifying 24 monitoring wells. It was determined that up to 24 locations would be sampled.

Soil and groundwater samples are to be dispatched to Eurofins Pty Ltd (Eurofins) under chain of custody documentation. Primary and intra-laboratory duplicates samples were analysed at Eurofins and inter-laboratory samples were analysed at Australian Laboratory Services Pty Ltd (ALS).

The methodology adopted during soil and groundwater sampling is presented in Table 5.2.

Table 5.2 Soil and groundwater investigation methodology

ACTIVITY	DETAILS
Soil sampling	
Subsurface clearance	Prior to the intrusive investigation, a Dial Before You Dig search was conducted and proposed borehole locations were scanned and cleared for underground services by a certified utility locating subcontractor.
Drilling	10 boreholes were advanced with a solid flight auger to a maximum depth of 4.5 mBGL. Each bore location was first cleared with a non-destructive advancement method (hand auger) up to a maximum depth of 1.5 mBGL prior to the advancement of the bores with a drill rig.
Soil sampling	Soil samples were collected directly from the auger using nitrile gloves. Samples were collected at 0.2 m BGL, 0.5 m BGL, 1.0 m BGL and every metre thereafter, with additional samples taken at any indication of potential contamination. Samples were field screened for volatiles using a PID.
	Boreholes were logged, with details including texture, colour, odour, moisture content and indications of contamination noted. Logs are provided in Appendix F.
Sample analysis	Soil samples were analysed for potential contaminants of concern, including:
	— Contaminants of concern were identified for the site as:
	— TRHs;
	— BTEXN;
	— PAHs;
	— Heavy metals (As, Cd, Cr, Cu, Pb, Ni, Zn and Hg); and
	— Asbestos
Decontamination	Disposable nitrile gloves were worn during sampling and were changed between sampling locations to minimise the potential for cross-contamination.
Groundwater sampling	
Well gauging	All wells were gauged for standing water level and for the presence of LNAPL using an interface probe. Calibration certificates are provided in Appendix G.
Well purging and sampling	Groundwater samples were collected with bailers. Sampling was carried out in accordance with Australian/New Zealand Standard <i>Water quality sampling, Part 11: Guidance on sampling of ground waters</i> , AS/NZS 5667.11, 1998.
	Field parameters (pH, dissolved oxygen, reduction/oxidation (redox), electrical conductivity and temperature) were monitored using a water quality meter, calibrated prior to use. Calibration certificates are provided in Appendix G. The groundwater was visually assessed for turbidity and evidence of contamination, such as odour or visible hydrocarbon sheen.

Groundwater samples were to be analysed for potential contaminants of concern, including: — TRHs; — BTEXN; — VOCs; and — Heavy metals (As, Cd, Cr, Cu, Pb, Ni, Zn and Hg)
Non-dedicated field equipment (i.e. interface probe) was decontaminated using Decon 90® detergent and rinsed with potable water between sampling of each well to minimise the potential for cross-contamination. Disposable nitrile gloves were changed between each sampling location.
Soil and groundwater sample duplicates were collected with a frequency of approximately 1 duplicate pair every 20 primary samples.
All samples were collected in laboratory-supplied containers. All samples were stored on ice in an insulated chest immediately after sampling. Samples were kept chilled prior to and during delivery to the selected laboratories via a courier under 'chain of custody' documentation.
Sample blanks were collected to verify that cross-contamination was unlikely to have occurred during sampling or during transportation of the samples. Equipment rinsate and trip blank samples were collected and analysed for TRHs and BTEXN.
Selected laboratories are accredited by the National Association of Testing Authorities for the required analyses. The laboratories performed internal QA/QC programs and used appropriate detection limits for the selected analyses. The following ranges were used as guidelines to acceptable results: — surrogates: 70-130% recovery; — matrix spikes: 70-140% recovery (organics) and 80-120% (inorganics); — control samples: 70-130% recovery (soil) and 80-120% (water); — duplicate samples: relative per cent difference (RPD) less than 30%; and — method blanks: 0 to less than limit of reporting (LOR).

5.3 DATA QUALITY ASSURANCE

To comply with sampling quality assurance data quality indicators (DQIs) for field sampling and laboratory analyses were complied with. The data obtained has been assessed as per the following field and laboratory DQIs as provided in Table 5.3 and

Table 5.4.

Table 5.3 DQIs for field techniques

DQI	TECHNIQUE	
Precision	WSP standard operating procedures (SOPs) appropriate and complied with.	

DQI	TECHNIQUE	
	Collection of intra-laboratory duplicate samples at appropriate rates (5%).	
	Intra- and inter-laboratory duplicate samples were co-collected	
Accuracy	WSP SOPs appropriate and complied with	
	Collection and analysis of inter-laboratory duplicates at appropriate rates (5%)	
	Inter-laboratory samples were co-collected in the field	
	Submission of rinsate blanks and trip blanks per laboratory batch.	
Representativeness	Appropriate media sampled	
Comparability	Fieldwork was conducted by Jess Watson of WSP, who is an adequately trained environmental scientist	
	Fieldwork was conducted under consistent sampling conditions (temperature, rainfall, wind)	
	The same type of samples collected.	
Completeness	All required samples collected	
	WSP standard operating procedures (SOPs) appropriate and complied with.	
	Fieldnotes, calibration certificates and laboratory reports are attached to this report.	

Table 5.4 DQIs for analytical laboratories

DQI	DESCRIPTION	ACCEPTABLE LIMIT	
Precision	Relative per cent differences (RPDs) for TRH and BTEXN in collected samples	Soil – <30% RPD Groundwater – <50% RPD for volatiles, <30% RPDs for semi-volatiles	
	National Association of Testing Authorities (NATA) certification of laboratories	NATA accreditation for analyses performed	
Accuracy	Analysis of trip blanks	Below limits of reporting (LORs) for contaminants analysed	
	Analysis of rinsate blanks when non- dedicated sampling equipment is being used	Below LORs for contaminants analysed	
	Analysis of field blanks	Below LORs for contaminants analysed	
	Analysis of laboratory matrix spikes, laboratory control samples and surrogate spikes	70-130% inorganics/metals 60-140% organics 10-40% semi-volatile organic compounds	
	RPDs for TRH and BTEXN in collected samples	Soil – <30% RPD Groundwater – <100% RPD for volatiles, <30% RPDs for semi-volatiles	
Representativeness	All required samples analysed	As per sampling plan	
Comparability	Sample analytical methods used (including clean-up)	As per NEPM (2013)	

DQI	DESCRIPTION	ACCEPTABLE LIMIT	
	Same units	Justify/quantify if different	
	Same laboratories	Justify/quantify if different	
	Sample LORs	Less than nominated criteria	
Completeness	All critical samples analysed	As per sampling plan	
	All required analytes analysed	As per sampling plan	
	Appropriate methods and LORs	As per NEPM (2013)	
	Sample documentation complete	As per NEPM (2013)	
	Sample holding times complied with	As per NEPM (2013)	

6 SITE ASSESSMENT CRITERIA

The National Environmental Protection (Assessment of Site Contamination) Amendment Measure 1999 (NEPM, as amended 2013) Schedule B1 Investigation Levels for Soil and Groundwater has been used to assess impacts at the site, as it provides a framework for the use of investigation and screening levels based on a matrix of human health and ecological risks.

6.1 SOIL CRITERIA

To assess the presence and extent of soil contamination at a site, the NEPM (2013) provides health investigation levels (HILs) and health screening levels (HSLs) for the assessment of impacted soil.

HSLs have been developed for selected petroleum compounds and fractions and are applicable to assessing human health risk via the vapour intrusion and inhalation pathway. The HSLs depend on predominant soil physicochemical properties and land use scenarios. The HSLs are divided into four generic land use settings which range from low density residential (HSL A) to commercial/industrial sites (HSL D). The HSLs methodology also further specifies subsurface profile, with criteria presented for sand, silt and clay soils at several depth intervals. Considering that the sub-surface profile comprises of sand, HSL A (residential) criteria in sand has been adopted by this assessment.

HILs provide an assessment of potential risk to human health from chronic exposure to contaminants and have been developed based on land use setting for residential use (HIL A) to commercial/industrial use (HIL D). HIL A (residential) criteria has been adopted for the purpose of this investigation.

The Cooperative Research Council for Contamination Assessment and Remediation of the Environment (CRC CARE) Technical Report No. 10 (Friebel and Nadebaum, 2011) provides HSLs for petroleum hydrocarbons specifically for direct contact of intrusive maintenance workers with contaminated media and for vapour inhalation in shallow trenches. The criteria for sand have been adopted as a conservative measure for the purposes of this investigation.

Based on the findings of the previous investigation, groundwater is inferred to flow towards the north. Coleridge Reserve is directly to the north of the site, therefore the NEPM (2013) investigation levels for freshwater with a 95% level of species protection have been adopted.

A summary of the relevant adopted soil assessment criteria is outlined below in Table 6.1

Table 6.1 Adopted soil assessment criteria

ANALYTE	HSL A & B, SAND¹ (mg/kg)			LYTE HSL A & B, SAND¹ (mg/kg) MAINTENANCE WORKERS² (mg/kg)		(mg/kg)	
	0 - <1 m	1 - <2 m	2 - <4 m	4 m+	SHALLOW TR	RENCH, SAND	DIRECT
					0 TO <2 m	2 TO <4 m	CONTACT
TRH C ₆ –C ₁₀ less BTEX (F1)	45	70	110	200	NL	NL	82,000
TRH >C ₁₀ -C ₁₆ less naphthalene (F2)	110	240	440	NL	NL	NL	62,000
TRH C ₁₆ –C ₃₄ (F3)	-	-	-	-	-	-	85,000
TRH C ₃₄ –C ₄₀ (F4)	-	-	-	-	-	-	120,000
Benzene	0.5	0.5	0.5	0.5	77	160	1,100
Toluene	0.5	220	310	540	NL	NL	120,000
Ethylbenzene	55	NL	NL	NL	NL	NL	85,000

ANALYTE	HSL A & B, SAND¹ (mg/kg)				MAINTENAN	ICE WORKERS ²	(mg/kg)
	0 - <1 m 1 - <2 m 2 - <4 m 4 r			4 m+	SHALLOW TF	RENCH, SAND	DIRECT
					0 TO <2 m	2 TO <4 m	CONTACT
Total xylenes	40	60	95	170	NL	NL	130,000
Naphthalene	3	NL	NL	NL	NL	NL	29,000

- (1) NEPM (2013) Schedule B1, Table 1A (3) Soil HSLs for vapour intrusion, commercial/industrial setting in sand
- (2) CRC CARE (2011) Technical report No. 10

NL: Not limiting. A vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario

6.2 GROUNDWATER ASSESSMENT CRITERIA

Schedule B1 of the NEPM (2013) defines groundwater investigation levels (GILs) that have been developed for a broad range of metals and organic contaminants in groundwater. GILs are applicable for assessing human health and ecological risk from direct contact (including consumption) with groundwater. GILs are based on the following guidelines:

- Australian and New Zealand Conservation Council/Agriculture, and Resource Management Council of Australia and New Zealand 2000, National water quality management strategy. Australian and New Zealand guidelines for fresh and marine water quality. This guideline has been superseded by an online resource prepared by the Australian and New Zealand Governments (ANZG) in 2018.
- National Health and Medical Research Council (NHMRC)/National Resource Management Ministerial Council (NRMMC) 2011, Australian Drinking Water Guidelines 6 (ADWG) (Version 3.5, updated August 2018).
- NHMRC 2008, Guidelines for Managing Risk in Recreational Waters.

Schedule B1 also provides a framework for assessing the human health risk from petroleum compounds and fractions via the inhalation and direct contact pathways through the development and implementation of HSLs. The adopted carbon fraction ranges for the HSLs are based on TRH analysis after subtraction of BTEX compounds and naphthalene. The HSLs are divided into three generic land use settings which range from low to high density residential (HSL A & B) to commercial/industrial sites (HSL D). The HSL methodology further specifies subsurface profile, with criteria presented for sand, silt and clay soils at several depth intervals. Where there is reasonable doubt as to the appropriate soil texture to select, either a conservative selection should be made (i.e. sand) or laboratory analysis carried out to determine particle size and hence soil texture sub-class. The NEPM (2013) HSLs provide an indicative risk to receptors from vapours that could emanate from contaminated groundwater. Considering the potential on- and off-site receptors, the sub-surface profile consisting primarily of sand and the measured depth to groundwater, HSL A & B (residential) criteria in sand greater than 8 metres have been adopted.

It is understood that the NSW EPA policy is that the trigger values for the protection of 95% of aquatic ecosystems should be used except where contaminants are potentially bio-accumulative in which case the trigger values for the protection of 99% of species should be used. Therefore, we have selected trigger values for the protection of 95% of freshwater water species for the majority of contaminants.

The groundwater HSLs and investigation levels for the contaminants relevant to the site are summarised in Table 6.2.

Table 6.2 Groundwater health screening levels and groundwater investigation levels

CHEMICAL	DRINKING WATER ⁽¹⁾ (µg/L)	HSL A & B ⁽²⁾ - SAND, WATER LEVEL GREATER THAN 8 m (µg/L)	FRESHWATER ECOSYSTEM ⁽³⁾ (µg/L)	RECREATIONAL WATER QUALITY ⁽⁴⁾ (µg/L)
TRH C ₆ –C ₁₀ less BTEX (F1)	-	1000	-	-
TRH >C ₁₀ -C ₁₆ less naphthalene (F2)	-	1000	-	-
Benzene	900	900	950	10
Toluene	800	NL	180	8,000
Ethylbenzene	300	NL	80	3,000
m- & p- xylene-	-	-	75	-
o-xylene	-	-	350	-
Total xylene	600	NL	-	6,000
Naphthalene (volatile)	-	NL	16	NL

- (1) ADWG (2019) Health Drinking water guidelines
- (2) NEPM (2013) Schedule B1 Investigation levels for soil and groundwater
- (3) ANZG (2018) Fresh and Marine Water Quality Guidelines trigger values for 95% protection level of freshwater ecosystem
- (4) NHMRC (2008) Recreational water guidelines

NL: not limiting;

- criteria are not available.

7 RESULTS AND DISCUSSION

7.1 FIELD OBSERVATIONS

A concrete hardstand forecourt was present across most of the site. Sample locations BH4 to BH8 were selected in the concrete hardstand forecourt near the UPSS infrastructure. Sample locations BH1, BH2, BH9 and BH10 were in grassed areas of the site (refer to Figure 2, Appendix A).

The sub-surface profile encountered during intrusive investigations at the site generally consisted of brown, gravelly sand fill to 0.5 m BGL, with underlying lithology comprising of brown to orange natural sand. Borehole location BH2 comprised of gravelly sand fill to 0.2 m BGL, with underlying grey-orange mottled clay fill to 2 m BGL, and natural sand encountered below.

Minimal signs of contamination were noted within the fill material (some coal ash and plastic), and no signs of contamination were observed in natural sands. Volatile vapours were detected at ambient concentrations by the PID for all samples.

7.2 SOIL ANALYTICAL RESULTS

Twenty soil samples were collected and analysed from 10 soil bores. In summary:

- Concentrations of metals were below adopted assessment criteria for all samples, except for nickel. Nickel exceeded EILs in two samples from BH1 and BH4;
- Concentrations of BTEXN were below the laboratory limit of reporting (LORs) for all samples;
- Concentrations of TRHs and PAHs were below assessment criteria for all samples;
- ACM was not detected in any samples analysed;

Although contamination was not identified in soil at the site, it is noted that only a limited number of soil samples were collected as part of this investigation. WSP considers that in the case of future maintenance/construction work, an unexpected finds protocol should be followed.

Soil analytical results are presented in Table D1 of Appendix D, with laboratory certificates presented in Appendix H.

7.3 GROUNDWATER MONITORING

Samples were collected from 20 groundwater monitoring wells, including MW4, MW6, MW9, MW10, MW11, MW12, MW13, MW14, MW15, MW16, MW17, MW19, MW20, MW21, MW23, MW26, MW30, MW32, MW33 and MW34.

It is noted that MW2, MW3, MW7, MW18, MW20 and MW25 were not sampled as they could not be accessed/located. MW31 was dry at the time of sampling (refer to Figure 3,Appendix A).

7.4 GROUNDWATER CONDITIONS

Groundwater conditions encountered at the site are presented in Table 7.1 and presented in Table D2 of Appendix D.

Table 7.1 Summary of groundwater conditions

PARAMETER	RESULTS
Depth to groundwater	Groundwater was encountered in all monitoring wells across the site, except for MW31. Standing water levels recorded for all wells across the site was approximately 9.0 m BTOC.
LNAPL occurrence	LNAPL was not detected in any of the groundwater monitoring wells.
Groundwater quality	The field parameters measured were as follows:
	 Electrical conductivity measurements ranged from 153 μS/cm to 497 μS/cm, indicating fresh water.
	 Redox measurements ranged from 114.0 mV to 419.0 mV. Redox potential values collected in the field using a silver chloride electrode have been corrected to standard hydrogen electrode values by adding 199 mV to each reading.
	— pH readings ranged from 4.37 to 6.41 indicating slightly to moderately acidic conditions.
	 Dissolved oxygen measurements ranged from 0.53 ppm to 4.74 ppm, indicating low to moderate oxygen saturation conditions.
	— Temperature measurements ranged from 19.8°C to 24.7°C.
	Recorded groundwater parameters for each well are detailed in Appendix D.

7.5 GROUNDWATER ANALYTICAL RESULTS

Groundwater was collected from 20 monitoring wells, with no LNAPL detected. In summary:

- Concentrations of TRHs exceeded assessment criteria for human health in eight monitoring wells;
- Concentrations of BTEX and VOCs were below assessment criteria for all wells;
- Concentrations of arsenic exceeded ADWG (2011) drinking water and recreational guidelines for MW6, MW21 and MW33;
- Concentrations of mercury exceeded GILs (freshwater) guidelines in four wells;
- Concentrations of copper exceeded GILs (freshwater) guidelines in six wells; and
- Concentrations of zinc exceeded GILs (freshwater) guidelines in six wells;

Complete groundwater analytical results are presented in Table C3 of Appendix D.

7.6 QUALITY ASSURANCE/QUALITY CONTROL

7.6.1 FIELD RESULTS

Field sampling procedures conformed to WSP's QA/QC protocols to prevent cross-contamination, preserve sample integrity and allow for collection of a suitable dataset from which to make technically sound decisions.

One soil duplicate sample pair, QA03 (intra-laboratory) and QA03a (inter-laboratory) was collected from BH2-0.3-0.4 during borehole advancement works and submitted for the analysis of metals, BTEX, PAHs and TRHs. One groundwater duplicate sample pair, QA01 (intra-laboratory) and QA01A (inter-laboratory), was collected for groundwater sample MW19 during the GME and submitted for the analysis of metals, TRHs, BTEXN and VOCs. The duplicate samples were analysed to assess the precision (intra-laboratory sample) and accuracy (inter-laboratory sample) of the data set.

RPDs were calculated for the primary and duplicate samples to assess the data quality, particularly for the assessment of the reproducibility (precision) and closeness of reported data to the true value (accuracy) of the analytical data measurements for the adopted field and laboratory methods. The RPDs were calculated using the formula below:

$$RPD\% = \frac{|Ro - Rd|}{|(Ro + Rd)/2|} \times 100\%$$

where Ro is the primary sample and Rd is the primary duplicate.

The RPD values were compared to the RPD acceptance criterion for soil and groundwater outlined in NEPM (2013).

As the concentrations in soil duplicate pairs were below laboratory LORs for COPCs including BTEX, PAHs and TRHs. RPDs were not able to be calculated for the majority of analytes. Some RPD exceedances occurred for metals, however this is not considered an issue as these analytes are not COPCs. Therefore, RPD recoveries for soil are generally considered acceptable.

One trip blank accompanied each sample batch throughout the investigation and was analysed for TRH and BTEXN. The trip blank results were below laboratory LORs, indicating a low likelihood of cross-contamination during sample collection and transport.

Additionally, one rinsate blank was collected during the GME and analysed for TRH and BTEXN. The rinsate blank results were below laboratory LORs, indicating a low likelihood of cross-contamination from sampling equipment.

QAQC results, including trip spike, blank and rinsate results for soil and groundwater analysis, can be found in Appendix E.

The details of conformance to specific field QA/QC requirements are presented in Table 7.2.

Table 7.2 Field data quality indicators

QA/QC REQUIREMENT	CONFORMED	COMMENTS
Fieldwork was undertaken by experienced field engineers and/or scientists	Yes	Qualified and experienced environmental scientists completed the fieldwork.
Samples delivered to laboratory within sample holding times and with correct preservative	Yes	Appropriate holding times were met for all samples. Samples were analysed by the laboratory within 7 days of sampling or within holding times for the particular analyte.
All analyses NATA accredited	Yes	None
Required number of sample duplicates	Yes	Field intra-laboratory duplicates and inter-laboratory duplicates were analysed for all contaminants of concern at the rate of approximately 1 in 20 primary investigation samples.
Required blanks taken	Yes	Trip blanks are taken to confirm no cross-contamination in occurs during sample transport. One trip blank accompanied each sample batch during this investigation.
Soil sample duplicates reported RPDs within limits set by AS4482.1	Partial	RPDs exceeded the acceptance threshold in soil for chromium and zinc. As these are not COPCs, the remaining RPDs are within the acceptable limit for the purposes of this investigation. There were no RPD exceedances for groundwater field duplicate and inter-laboratory duplicate samples.

7.6.2 LABORATORY RESULTS

Each laboratory undertook internal QA/QC, including the analysis of laboratory control spikes, surrogate recoveries, laboratory duplicates and method blanks. The quality control compliance provided by both laboratories indicated that no method blank, duplicate, laboratory control, surrogate recovery, or analysis holding time outliers exist.

Laboratory certificates including internal quality control reports are provided in Appendix H.

The details of conformance to specific laboratory QA/QC requirements are given in Table 7.3.

Table 7.3 Laboratory data quality indicators

QUALITY ASSURANCE	CONFORMED	COMMENT
Laboratory holding times	Yes	All samples were analysed within acceptable holding time.
Laboratory duplicates	Partial	Most internal laboratory duplicates returned acceptable RPDs, except for minor non-conformances TRHs in groundwater and zinc in soil. The RPD recoveries are within Eurofins acceptance limits.
Laboratory control samples	Yes	Control sample analysis results conformed to the laboratory criteria.
Surrogates	Yes	Surrogate samples analysis results conformed to the laboratory limits.
Matrix spikes	Yes	All matrix spike data conformed to recovery limits.

7.6.3 QUALITY STATEMENT

WSP considers that the sample collection, documentation, handling, storage and transportation procedures utilised are of an acceptable standard and that the analytical results provided by the laboratories (Eurofins and ALS) are deemed reliable and complete based on:

- NATA certification;
- the results of field and laboratory QA/QC samples demonstrated levels of precision and accuracy with sufficient repeatability and completeness in accordance with specified RPDs; and
- primary samples were analysed for a range of contaminants with all testing undertaken within recommended holding times.

It is therefore considered that the data is sufficiently precise and accurate for the purposes of this preliminary site investigation.

8 CONCEPTUAL SITE MODEL

The intention of the CSM is to define source-pathway-receptors linkages that, if identified, indicate that potential human and/or environmental risks may be present. The CSM is considered in the context of ongoing land use of the site as a service station with mixed use low to high density residential properties in the immediate surrounds. The CSM has been developed on the basis that in the event that no plausible linkages exist, then no significant risk is considered to be present. Therefore, the CSM specifically focuses on the plausible linkages between the three aspects (i.e. source, pathway and receptor) based on the specified scenarios.

8.1 SOURCE IDENTIFICATION

Likely sources of contaminants at the site are the UPSS and associated infrastructure, which are typically associated with:

- leaks from tanks or fuel line failures, degradation or damage; and/or
- spills during re-fuelling activities or product loss during tank repair, replacement and decommissioning works.

Historically, a known tank leak occurred at the site in 2001. A previous investigation by Parsons Brinckerhoff (2012) identified phase separated hydrocarbons (PSH) of diesel in one well (MW27) with a thickness of 10.1 cm. The GME data showed dissolved-phase hydrocarbons in wells around the refuelling area. Parsons Brinckerhoff did not consider that there was a risk to human health in the context of the continued use of the site as a bus depot.

8.2 CONTAMINANT TRANSPORT AND EXPOSURE PATHWAYS

Based on the nature and distribution of hydrocarbon impacts identified during this investigation and site hydrogeology, anticipated primary transport mechanisms for the migration of identified contaminants are:

- vertical migration of contaminants in soil into the underlying groundwater via leaching and dissolution or under the influence of gravity;
- lateral migration of contaminated groundwater off site, potentially affecting nearby surface water bodies;
- migration of contaminants through preferential pathways/underground service trenches presenting a potential vapour inhalation risk; and
- vertical migration of hydrocarbon vapour.

8.3 ASSESSMENT OF PATHWAYS AND RECEPTORS

The relevant exposure pathways and identified potential receptors are summarised in Table 8.1.

Table 8.1 Relevant exposure pathways

POTENTIAL RECEPTOR	POTENTIAL EXPOSURE PATHWAY	LIKELIHOOD OF POTENTIAL POLLUTANT LINKAGES
On-Site		
Site workers	Ingestion and dermal contact with soil or groundwater	Unlikely : The site is covered with hardstand in the vicinity of the bowsers. Additionally, there are no bores used for domestic use in the area surrounding the site.

POTENTIAL RECEPTOR	POTENTIAL EXPOSURE PATHWAY	LIKELIHOOD OF POTENTIAL POLLUTANT LINKAGES		
	Intrusion of vapour to onsite retail building	Unlikely : Volatile contaminants in groundwater can equilibrate with pore spaces and migrate vertically and may cause a vapour intrusion risk to occupants of overlying buildings however, volatile hydrocarbon concentrations were detected in some well sampled.		
Intrusive maintenance workers and	Ingestion and dermal contact with impacted soils and groundwater	Unlikely : As standing water level was approximately 9 m BGL for all monitoring wells, it is unlikely that intrusive maintenance workers would come into direct contact with contaminated groundwater.		
excavation workers	Inhalation of vapour in shallow excavation trenches	Possible : As detections of TRHs in groundwater exceeded the adopted assessment criteria for HSL A, a possible vapour risk exists to future residential receptors.		
Off-Site				
Commercial workers in nearby properties	Ingestion and dermal contact with impacted groundwater	Unlikely: It is considered unlikely for adjacent properties to be affected by potential on-site contamination, as there are no sensitive receptors location in proximity of the site.		
	Intrusion of vapour to off- site buildings	Unlikely: Volatile contaminants in groundwater can equilibrate with pore spaces and migrate vertically and may cause a vapour intrusion risk to occupants of overlying buildings however, no volatile hydrocarbon concentrations were not detected in wells located further away from the bowsers.		
Residential occupants of adjacent properties	Dermal contact with impacted soils and groundwater	Unlikely: Due to the absence of significant impacts in the hydraulically downgradient wells, and considering the depth of groundwater, it is considered unlikely that adjacent properties would be impacted.		
Environmental	Environmental			
Surface waters	Lateral migration of contaminants in groundwater	Unlikely: Given the distance to the nearest down gradient surface water receptor (1 km north west), the immediate risk to ecological receptors is considered low.		

9 CONCLUSIONS

Red Bus Services commissioned WSP to undertake a Preliminary Site Investigation with limited soil sampling and groundwater monitoring at the Red Bus Service's bus depot located at 682a The Entrance Road, Bateau Bay NSW. The objective of the PSI assessment was to assess the presence and extent of potential hydrocarbon contamination at the site.

The scope of the ESA included a desktop assessment and the advancement of ten soil boreholes and monitoring of existing onsite groundwater wells. Concentrations of BTEXN, TRHs and PAHs were below adopted assessment criteria in soil. Concentrations of metals were below the adopted assessment criteria with the exception of nickel at two locations. The concentrations were above the ecological criteria, however WSP considers the detection of nickel to be negligible risk to the ecological receptors due to current and future usage of the site and lack of significant ecological population requiring protection on site.

Groundwater flow direction is confirmed to be towards the north. Concentrations of BTEX and VOCs were below adopted assessment criteria in groundwater, with the TRH F2 fraction exceeding the adopted assessment criteria for HSL A & B (re: potential vapour intrusion risk) in groundwater wells located in the bowser area and immediately to the north. The groundwater results show that the impact is from diesel and as such, vapour risks should be minimal or negligible. However, diesel in groundwater presents, partially in $F2 > C_{10} - C_{16}$ TRH fraction and there were several wells exceeding the F2 criterion. This uncertainty can be resolved through soil vapour measures. The identified concentrations are not considered to pose a risk to human health in the current site condition as the area is well ventilated and covered in concrete or asphalt hardstand unless site excavations are undertaken. WSP considers that there is a possible risk to future residential receptors in the case of redevelopment of the site. This could be mitigated with additional groundwater and soil vapour assessment within the impacted area to aid in determining the potential risk to human health, and if required the development of a remedial action plan (RAP) and/or site management plan (SMP). Concentrations of metals exceeded the freshwater criteria for of copper, mercury and zinc and recreational water for arsenic. These concentrations are not considered significant as there is an absence of groundwater extraction within the site.

WSP considers site suitable for continued commercial/industrial use, though prior to any redevelopment, it is recommended that further assessment of groundwater and vapour intrusion be undertaken with relevance to human health of the proposed development. It is noted that the consent authority for a development application or an application for rezoning of land must consider, amongst other things, whether the land is contaminated and whether the land is suitable for the proposed use.

10 LIMITATIONS

This Report is provided by WSP Australia Pt Limited (*WSP*) for Red Bus Services (*Client*) in response to specific instructions from the Client and in accordance with WSP's proposal dated 24 August 2021 and agreement with the Client dated 7 September 2021 (*Agreement*).

PERMITTED PURPOSE

This Report is provided by WSP for the purpose described in the Agreement and no responsibility is accepted by WSP for the use of the Report in whole or in part, for any other purpose (*Permitted Purpose*).

QUALIFICATIONS AND ASSUMPTIONS

The services undertaken by WSP in preparing this Report were limited to those specifically detailed in the Report and are subject to the scope, qualifications, assumptions and limitations set out in the Report or otherwise communicated to the Client.

Except as otherwise stated in the Report and to the extent that statements, opinions, facts, conclusion and/or recommendations in the Report (*Conclusions*) are based in whole or in part on information provided by the Client and other parties identified in the Report (*Information*), those Conclusions are based on assumptions by WSP of the reliability, adequacy, accuracy and completeness of the Information and have not been verified. WSP accepts no responsibility for the Information.

The Conclusions are reflective of the current Site conditions and cannot be regarded as absolute without further extensive intrusive investigations, outside the scope of the services set out in the Agreement and are indicative of the environmental conditions of the Site at the time of preparing the Report. As a general principle, vertical and horizontal soil or groundwater conditions are not uniform. No monitoring, common or intrusive testing or sampling technique can eliminate the possibility that monitoring or testing results or samples taken, are not totally representative of soil and/or groundwater conditions encountered at the Site. It should also be recognised that Site conditions, including subsurface conditions can change with time due to the presence and concentration of contaminants, changing natural forces and man-made influences.

Within the limitations imposed by the scope of the service undertaken by WSP, the monitoring, testing (intrusive or otherwise), sampling for the preparation of this Report has been undertaken and performed in a professional manner in accordance with generally accepted practices, using a degree of skill and care ordinarily exercised by reputable environmental consultants under similar circumstances. No other warrant, expressed or implied, is made.

WSP has prepared the Report without regard to any special interest of any person other than the Client when undertaking the services described in the Agreement or in preparing the Report.

USE AND RELIANCE

This Report should be read in its entirety and must not be copied, distributed or referred to in part only. The Report must not be reproduced without the written approval of WSP. WSP will not be responsible for interpretations or conclusions drawn. This Report (or sections of the Report) should not be used as part of a specification for a project or for incorporation into any other document without the prior agreement of WSP.

WSP is not (and will not be) obliged to provide an update of this Report to include any event, circumstance, revised Information or any matter coming to WSP's attention after the date of this Report. Data reported and conclusions drawn are based solely on the information made available to WSP at the time of preparing the Report. The passage of time; unexpected variations in ground conditions; manifestations of latent conditions; or the impact of future events (including (without limitation) changes in policy, legislation, guidelines, scientific knowledge; and changes in interpretation of policy by statutory authorities); may require further investigation or subsequent re-evaluation of the Conclusions.

This Report can only be relied upon for the Permitted Purpose and may not be relied upon for any other purpose. The Report does not purport to recommend or induce a decision to make (or not make) any purchase, disposal, investment,

divestment, financial commitment or otherwise. It is the responsibility of the Client to accept (if the Client so choose) the Conclusions and implement any recommendations in an appropriate, suitable and timely manner.

In the absence of express written consent of WSP, no responsibility is accepted by WSP for the use of the Report in whole or in part by any party other than the Client for any purpose whatsoever. Without the express written consent of WSP, any use which a third party makes of this Report or any reliance on (or decisions to be made) based on this Report is at the sole risk of those third parties without recourse to WSP. Third parties should make their own enquiries and obtain independent advice in relation to any matter dealt with or conclusions expressed in the Report.

DISCLAIMER

No warranty, undertaking or guarantee whether expressed or implied, is made with respect to the data reported or the conclusions drawn. To the fullest extent permitted at law, WSP, its related bodies, corporate and its officers, employees and agents assumes no responsibility and will not be liable to any third party for, or in relation to, any losses, damages or expenses (including any indirect, consequential or punitive losses or damages or any amounts for loss of profit, loss of revenue, loss of opportunity to earn profit, loss of production, loss of contract, increased operations costs, loss of business opportunity, site depredation costs, business interruption or economic loss) of any kind whatsoever, suffered or incurred by a third party.

REFERENCES

- Australian/New Zealand Standard Water Quality sampling, Part 11: Guidance on sampling of ground waters, AS/NZS 5667.11, 1998
- Australian Government Initiative 2018, Australian and New Zealand Guidelines for Fresh and Marine Water Quality
- Friebel, E & Nadebaum, P 2011c, Health screening levels for petroleum hydrocarbons in soil and groundwater. Part
 1: Technical development document, CRC CARE Technical Report no. 10, CRC for Contamination Assessment and
 Remediation of the Environment, Adelaide, Australia
- Friebel, E & Nadebaum, P 2011a, Health screening levels for petroleum hydrocarbons in soil and groundwater. Part
 2: Application document, CRC CARE Technical Report no. 10, CRC for Contamination Assessment and
 Remediation of the Environment, Adelaide, Australia
- Friebel, E & Nadebaum, P 2011b, Health screening levels for petroleum hydrocarbons in soil and groundwater. Part
 4: Extension model, CRC CARE Technical Report no. 10, CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia
- National Environment Protection (Assessment of Site Contamination) Measures 1999 (NEPM; as amended 2013)
- National Health and Medical Research Council (NHMRC) and Natural Resource Management Ministerial Council (NRMMC) (2011), Australian Drinking Water Guidelines - The National Water Quality Management Strategy
- NSW Department of Environment, Climate Change and Water 2008, Underground Petroleum Storage System Regulation
- NSW EPA 1994, Guidelines for Assessing Service Station Sites
- NSW EPA 2020, Guidelines for Consultants Reporting on Contaminated Sites
- NSW EPA 2015, Guidelines on the Duty to Report Contamination
- United States Environmental Protection Agency 2006, Guidance on Systematic Planning Using the Data Quality

APPENDIX A

FIGURES

Environmental Due Diligence

Figure A1Site Locality

Legend

Site location

682a The Entrance Road, Bateau Bay NSW

Environmental Due Diligence

Figure A2Site Layout

Legend

- Subject property
- Bore location

682a The Entrance Road, Bateau Bay NSW

Environmental Due Diligence

Figure A3
Groundwater Monitoring Well Locations

Legend

- Subject property
- Groundwater monitoring well locations sampled during the current investigation

682a The Entrance Road, Bateau Bay NSW

APPENDIX B PHOTOGRAPHIC LOG

Client Name

Red Bus Services

Site Location

682a The Entrance Road, Bateau Bay

Project No. PS126618

Photo No.

Date

1

4 October 2021

Description

A and B blocks, facing northeast.

Photo No.

Date

2

4 October 2021

Description

A block, view of water separator. Facing north-east.

Client Name

Red Bus Services

Site Location

682a The Entrance Road, Bateau Bay

Project No. PS126618

Photo No.

Date

3

4 October 2021

Description

AST Adblue and bowsers, facing west.

Photo No.

Date

4

4 October 2021

Description

B block, facing east.

Client Name Red Bus Services **Site Location** 682a The Entrance Road, Bateau Bay

Project No. PS126618

Photo No. Date
5 4 October 2021

Description

Photo No. Date
6 4 October 2021

Description

Buspark facing north.

Client Name Red Bus Services **Site Location** 682a The Entrance Road, Bateau Bay

Project No. PS126618

Photo No. Date
7 4 October 2021

Description

Carpark, facing south.

Photo No. Date

8 4 October 2021

Description

Chemical building and C block, facing north-west

Client Name Red Bus Services Site Location

682a The Entrance Road, Bateau Bay

Project No. PS126618

Photo No.

Date

9

4 October 2021

Description

Chemical storage within chemical building.

Photo No.

Date

10

4 October 2021

Description

Chemical building, storage of paint.

Client Name Red Bus Services Site Location 682a The Entrance Road, Bateau Bay Project No. PS126618

Photo No. Date

11 4 October 2021

Description

Cleaning chemicals within chemical building.

Photo No. Date

12 4 October 2021

Description

ICB drums near Block B, facing south-west

Client Name Red Bus Services Site Location 682a The Entrance Road, Bateau Bay Project No. PS126618

Photo No. Date

13 4 October 2021

Description

Storage drums, unknown contents, near Block B. Facing south-west.

Photo No. Date

14 4 October 2021

Description

Eastern portion, significant gradient. Facing north.

Client Name

Red Bus Services

Site Location

682a The Entrance Road, Bateau Bay

Project No. PS126618

Photo No. Date

15

4 October 2021

Description

Empty chemical containers and IBC container between C and D block.

Photo No. Date

16

4 October 2021

Description

F block facing west.

Client Name Red Bus Services **Site Location** 682a The Entrance Road, Bateau Bay

Project No. PS126618

Photo No. Date
17 4 October 2021

Description

H block container facing north

Photo No. Date
18 4 October 2021

Description

Diesel AST, facing north-east.

COMBUSTIBLE LIQUID CI DIESEL SEL 45.000 LITRES

Client Name Red Bus Services **Site Location** 682a The Entrance Road, Bateau Bay

Project No. PS126618

Photo No. Date

19 4 October 2021

Description

Outside AST and lines, facing south-west.

Client Name Red Bus Services Site Location

Project No. PS126618

682a The Entrance Road, Bateau Bay

21

Photo No.

Date 4 October 2021

Description

Overflow Culvert, facing south.

Photo No.

Date

22

4 October 2021

Description

View from behind F block.

Client Name Red Bus Services **Site Location** 682a The Entrance Road, Bateau Bay

Project No. PS126618

Photo No. Date
23 4 October 2021

Description

View from behind E block.

Photo No. Date

24 4 October 2021

Description

View west of office.

APPENDIX C

HISTORICAL AERIAL PHOTOGRAPHS

Client Name

The Entrance Red Bus Services **Site Location**

682a The Entrance Road, Bateau Bay

Project No. PS126618

Photo No. Date
1 1966

Description

1966 historical aerial photograph

 Photo No.
 Date

 2
 1976

Description

1976 historical aerial photograph

Client Name

The Entrance Red Bus Services **Site Location**

682a The Entrance Road, Bateau Bay

Project No. PS126618

 Photo No.
 Date

 3
 1984

Description

1984 historical aerial photograph

 Photo No.
 Date

 4
 1996

Description

1996 historical aerial photograph

Client Name

The Entrance Red Bus Services **Site Location**

682a The Entrance Road, Bateau Bay

Project No. PS126618

Photo No.	Date
5	2004

Description

2004 historical aerial photograph

Photo No.	Date
6	2014

Description

2014 historical aerial photograph

Client Name The Entrance Red Bus Services **Site Location** 682a The Entrance Road, Bateau Bay

Project No. PS126618

Photo No.	Date	
7	2021	《新展》 《图》在14年度包
Description		
2021 current ae	rial photograph	

APPENDIX D

RESULTS TABLES

		Monocycli Hydro	c Aromatic	Physicochemical parameters								Me	tals						
		Naphthalene (MAH)	Naphthalene (MAH)	% Moisture	Arsenic	Arsenic (filtered)	Cadmium	Cadmium (filtered)	Chromium	Chromium (filtered)	Copper	Copper (filtered)	read	Lead (filtered)	Mercury	Mercury (filtered)	Nickel	Nickel (filtered)	Zinc
		mg/kg	μg/L	%	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg
EQL		0.5	10	1	2	1	0.4	0.2	5	1	5	1	5	1	0.1	0.1	5	1	5
	Generic EIL - Urban Res & Public Open Space				100				190		60		1,100				30		70
NEPM 2013 Table 1A(1) H					100		20				6,000		300		40		400		7,400
	tes A/B Soil HSL for Vapour Intrusion, Sand																		
>=0m, <1m																			
>=1m, <2m																			
>=2m, <4m >=4m																			
Z-4111																			
Field ID	Date																		
BH1-0.1-0.2	6/10/2021	<0.5		1.2	6.9		<0.4		50		23		6.1	1	<0.1		43		26
BH1-0.4-0.5	6/10/2021	<0.5		20	<2		<0.4		<5		<5		<5		<0.1		<5		<5
BH2-0.3-0.4	6/10/2021	<0.5		8.7	2.4		<0.4		9.0		<5		5.5		<0.1		<5		15
BH2-0.9-1.0	6/10/2021	<0.5		17	2.5		<0.4		12		9.7		16		<0.1		<5		51
BH3-0.1-0.2	6/10/2021	<0.5		18	<2		<0.4		6.0		29		43		0.1		<5		62
BH3-0.4-0.5	6/10/2021	<0.5		10.0	<2		<0.4		<5		7.9		15		<0.1		<5		44
BH4-0.2-0.3	6/10/2021	<0.5		10	3.2		<0.4		65		29		10		<0.1		65		44
BH4-0.4-0.5	6/10/2021	<0.5		8.9	2.7		<0.4		11		<5		<5		<0.1		<5		<5
BH5-0.2-0.3	6/10/2021	<0.5		6.5	3.4		<0.4		24		8.2		<5		<0.1		18		20
BH5-0.5-0.6	6/10/2021	<0.5		8.4	2.7		<0.4		11		<5		<5		0.1		<5		<5
BH6-0.2-0.3	6/10/2021	<0.5		10	3.8		<0.4		14		<5		<5		<0.1		<5		<5
BH6-0.4-0.5	6/10/2021	<0.5		12	3.3		<0.4		12		<5		<5		<0.1		<5		<5
BH7-0.2-0.3	6/10/2021	<0.5		8.0	3.8		<0.4		12		<5		<5		0.1		<5		<5
BH7-0.5-0.6	6/10/2021	<0.5		8.2	3.8		<0.4		12		<5		<5		<0.1	-	<5		<5
BH8-0.1-0.2 BH8-0.4-0.5	6/10/2021 6/10/2021	<0.5 <0.5		8.9 7.2	2.7 <2		<0.4 <0.4		11 <5		18 <5		8.4 <5		<0.1 <0.1		<5 <5		29 8.1
BH8-0.4-0.5 BH9-0.1-0.2	6/10/2021	<0.5 <0.5		3.5	2.3		<0.4		7.1		5.3		5.3		<0.1	1	<5 <5		14
ВН9-0.1-0.2	6/10/2021	<0.5		12	<2.3		<0.4		7.1 <5		5.5 <5		14		<0.1		<5 <5		14
BH10-0.1-0.2	6/10/2021	<0.5		11	<2		<0.4		<5		<5		6.7		<0.1		<5		22
BH10-0.4-0.5	6/10/2021	<0.5		8.5	<2		<0.4		<5		<5		<5		<0.1		<5		<5
223 014 013		" ·0.3	ı		·-	ı	10.1	ı		1	. ~ _			I.	10.1	1			·
Statistics																			
Number of Results		22	1	21	21	1	21	1	21	1	21	1	21	1	21	1	21	1	21
Number of Detects		0	0	21	14	0	0	0	15	0	9	0	11	0	3	0	4	0	13
Minimum Concentration		<0.5	<10	1.2	<2	<1	<0.4	<0.2	<5	<1	<5	<1	<5	<1	0.1	<0.1	<5	<1	<5
Maximum Concentration		<0.5	<10	20	6.9	<1	<0.4	<0.2	65	<1	29	<1	43	<1	0.1	<0.1	65	<1	62
* A Non Detect Multiplier		0		4.4	1.7		0		16		8.9		9.3		0.018		16		20

^{*} A Non Detect Multiplier of 0.5 has been applied.

								BTEX										
	Zinc (filtered)	Benzene		Toluene		-	Ethylbenzene		Aylene (m & p)		Xylene (o)	Xylene (Sum)		Naphthalene	Naphthalene		67-07	
	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg
EQL	5	0.1	1	0.1	1	0.1	1	0.2	2	0.1	1	0.3	3	0.5	1	20	20	20
NEPM 2013 Table 1B(5) Generic EIL - Urban Res & Public Open Space														170				
NEPM 2013 Table 1A(1) HILs Res A Soil																		
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand		0.5 0.5 0.5 0.5		160 220 310 540		55						40 60 95 170		3				
>=0m, <1m		0.5		160		55						40		3				
>=1m, <2m		0.5		220								60						
>=2m, <4m		0.5		310								95						
>=4m		0.5		540								170						
Field ID Date																1		
BH1-0.1-0.2 6/10/2021		<0.1		<0.1		<0.1		<0.2		<0.1		<0.3		<0.5		<20		<400
BH1-0.4-0.5 6/10/2021		<0.1		<0.1		<0.1		<0.2		<0.1		<0.3		<0.5		<20		<20
BH2-0.3-0.4 6/10/2021		<0.1		<0.1		<0.1		<0.2		<0.1		<0.3		<0.5		<20		<20
BH2-0.9-1.0 6/10/2021		<0.1		<0.1		<0.1		<0.2		<0.1		<0.3		<0.5		<20		<20
BH3-0.1-0.2 6/10/2021		<0.1		<0.1		<0.1		<0.2		<0.1		<0.3		<0.5		<20		<20
BH3-0.4-0.5 6/10/2021		<0.1		<0.1		<0.1		<0.2		<0.1		<0.3		<0.5		<20		<20
BH4-0.2-0.3 6/10/2021		<0.1		<0.1		<0.1		<0.2		<0.1		<0.3		<0.5		<20		<200
BH4-0.4-0.5 6/10/2021		<0.1		<0.1		<0.1		<0.2		<0.1		<0.3		<0.5		<20		<20
BH5-0.2-0.3 6/10/2021		<0.1		<0.1		<0.1		<0.2		<0.1		<0.3		<0.5		<20		<20
BH5-0.5-0.6 6/10/2021		<0.1		<0.1		<0.1		<0.2		<0.1		<0.3		<0.5		<20		<20
BH6-0.2-0.3 6/10/2021		<0.1		<0.1		<0.1		<0.2		<0.1		<0.3		<0.5		<20		<20
BH6-0.4-0.5 6/10/2021		<0.1		<0.1		<0.1		<0.2		<0.1		<0.3		<0.5		<20		<20
BH7-0.2-0.3 6/10/2021		<0.1		<0.1		<0.1		<0.2		<0.1		<0.3		<0.5		<20		<20
BH7-0.5-0.6 6/10/2021		<0.1		<0.1		<0.1		<0.2		<0.1		<0.3		<0.5		<20		<20
BH8-0.1-0.2 6/10/2021		<0.1		<0.1		<0.1		<0.2		<0.1		<0.3		<0.5		<20		<20
BH8-0.4-0.5 6/10/2021		<0.1		<0.1		<0.1		<0.2		<0.1		<0.3		<0.5		<20		<20
BH9-0.1-0.2 6/10/2021		<0.1		<0.1		<0.1		<0.2		<0.1		<0.3		<0.5		<20		<20
BH9-1.9-2.0 6/10/2021		<0.1		<0.1		<0.1		<0.2		<0.1		<0.3		<0.5		<20		<20
BH10-0.1-0.2 6/10/2021		<0.1		<0.1		<0.1		<0.2		<0.1		<0.3		<0.5		<20		<20
BH10-0.4-0.5 6/10/2021		<0.1		<0.1		<0.1		<0.2		<0.1		<0.3		<0.5		<20		<20
1-1															1			
Statistics																		
Number of Results	1	22	1	22	1	22	1	22	1	22	1	22	1	21	1	22	1	21
Number of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration	<5	<0.1	<1	<0.1	<1	<0.1	<1	<0.2	<2	<0.1	<1	<0.3	<3	<0.5	<1	<20	<20	<20
Maximum Concentration	<5	<0.1	<1	<0.1	<1	<0.1	<1	<0.2	<2	<0.1	<1	<0.3	<3	<0.5	<1	<20	<20	<400
Standard Deviation *		0		0		0		0		0		0		0		0		45

^{*} A Non Detect Multiplier of 0.5 has been applied.

			TPH (NEPM 1	1999 Fraction)		T		<u> </u>		I		I		TRH (NEPM 201	3 Fraction)	<u> </u>		
				C15 - C28		C29 - C36	C10 - C36 (Sum)	C10 - C36 (Sum)		C6 - C10	C6 - C10 less BTEX			C10 - C16	C10 - C16 less	Naphthalene (F2)		C16 - C34	
		μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg
EQL		50	50	100	50	100	50	100	20	20	20	20	50	50	50	50	100	100	100
	(5) Generic EIL - Urban Res & Public Open Space																		
NEPM 2013 Table 1A((1) HILS RES A Soil (3) Res A/B Soil HSL for Vapour Intrusion, Sand										45 70 110 200				110 240 440	1			
>=0m, <1m	(3) Nes A/B 3011 H3E for Vapour Hitrusion, Sand										45 70 110 200				110 240 440				
>=1m, <2m											70				240				
>=2m, <4m											110				440				
>=4m											200								
Field ID	Date Control of the C		-1.000	<u> </u>	41.000	<u> </u>	-1.000	<u> </u>	-20	1	1 -20	<u> </u>	11 000	T	1 11 000	<u> </u>	12,000		-2.000
BH1-0.1-0.2 BH1-0.4-0.5	6/10/2021 6/10/2021	-	<1,000 <50		<1,000 <50		<1,000 <50		<20 <20		<20 <20		<1,000 <50		<1,000 <50		<2,000 <100		<2,000 <100
BH2-0.3-0.4	6/10/2021		<50		<50		<50		<20		<20		<50		<50		<100		<100
BH2-0.9-1.0	6/10/2021		<50		<50		<50		<20		<20		<50		<50		<100	1	<100
BH3-0.1-0.2	6/10/2021		<50		<50		<50		<20		<20		<50		<50		<100		<100
BH3-0.4-0.5	6/10/2021		<50		<50		<50		<20		<20		<50		<50		<100		<100
BH4-0.2-0.3	6/10/2021		<500		<500		<500		<20		<20		<500		<500		<1,000		<1,000
BH4-0.4-0.5	6/10/2021		<50		<50		<50		<20		<20		<50		<50		<100		<100
BH5-0.2-0.3	6/10/2021		120		<50		120		<20		<20		<50		<50		150		<100
BH5-0.5-0.6	6/10/2021		410		<50		410		<20		<20		64		64		390		<100
BH6-0.2-0.3	6/10/2021		<50		<50		<50		<20		<20		<50		<50		<100		<100
BH6-0.4-0.5	6/10/2021		<50		<50		<50		<20		<20		<50		<50		<100		<100
BH7-0.2-0.3	6/10/2021		<50		<50		<50		<20		<20		<50	-	<50		<100		<100
BH7-0.5-0.6 BH8-0.1-0.2	6/10/2021 6/10/2021		<50 <50		<50 <50		<50 <50		<20 <20		<20 <20		<50 <50		<50 <50		<100 <100	 	<100 <100
BH8-0.1-0.2 BH8-0.4-0.5	6/10/2021	+	<50 <50		<50 <50		<50 <50		<20		<20	 	<50 <50	1	<50 <50		<100	\vdash	<100
ВН9-0.1-0.2	6/10/2021		<50		66		66		<20		<20		<50		<50		120		<100
BH9-1.9-2.0	6/10/2021		<50		<50		<50		<20		<20		<50		<50		<100	†	<100
BH10-0.1-0.2	6/10/2021		<50		<50		<50		<20		<20		<50		<50		<100		<100
BH10-0.4-0.5	6/10/2021		<50		<50		<50		<20		<20		<50		<50		<100		<100
Statistics									1							T	T		
Number of Results		1	21	1	21	1	21	1	22	1	22	1	21	1	21	1	21	1	21
Number of Detects	M	0	2	0	1 .50	0	3	0	0	0	0	0	1 .50	0	1 1	0	3	0	0
Minimum Concentrat		<50 <50	<50 <1,000	<100 <100	<50 <1,000	<100 <100	<50 <1,000	<100	<20 <20	<20 <20	<20 <20	<20 <20	<50 <1,000	<50 <50	<50 <1,000	<50 <50	<100 <2,000	<100 <100	<100
Maximum Concentrat Standard Deviation *		<50	135	<100	<1,000 112	<100	<1,000 135	<100	<20 0	<20	<20 0	<20	<1,000 112	<50	<1,000 112	<50	<2,000 230	<100	<2,000 225
Standard Deviation *			133	<u> </u>	112		133			<u> </u>	ı U	L	112	<u> </u>	112	<u> </u>	430		

^{*} A Non Detect Multiplier of 0.5 has been applied.

		DEC. 100	C10 - C40 (Sum)	C10 - C40 (Sum)	-	Acenapntnene		Acenaphinytene		Antinacene	1,7	benz(a)antnracene	Onomia (c)/Eno	benzo(a) pyrene	Benzo(a)pyrene TEQ calc (Zero)	Benzo(b&j)fluoranth	:		benzolg,n,i)perylene	Benzo(k)fluoranthen
		μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	mg/kg	μg/L	mg/kg	μg/L	mg/kg
EQL		100	100	100	0.5	1	0.5	1	0.5	1	0.5	1	0.5	1	0.5	0.5	1	0.5	1	0.5
NEPM 2013 Table 1B(5)) Generic EIL - Urban Res & Public Open Space																			
NEPM 2013 Table 1A(1)) HILs Res A Soil														3					
	Res A/B Soil HSL for Vapour Intrusion, Sand																			
>=0m, <1m																				
>=1m, <2m																				
>=2m, <4m																				
>=4m																				
		•	•	•					•							•	•			
Field ID	Date																			
BH1-0.1-0.2	6/10/2021		<2,000		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5	<0.5		<0.5		<0.5
BH1-0.4-0.5	6/10/2021		<100		<0.5		<0.5		<0.5		<0.5		0.6		0.6	<0.5		<0.5		<0.5
BH2-0.3-0.4	6/10/2021		<100		<0.5		<0.5		<0.5		<0.5		0.6		0.6	<0.5		<0.5		<0.5
BH2-0.9-1.0	6/10/2021		<100		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5	<0.5		<0.5		<0.5
BH3-0.1-0.2	6/10/2021		<100		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5	<0.5		<0.5		<0.5
BH3-0.4-0.5	6/10/2021		<100		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5	<0.5		<0.5		<0.5
BH4-0.2-0.3	6/10/2021		<1,000		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5	<0.5		<0.5		<0.5
BH4-0.4-0.5	6/10/2021		<100		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5	<0.5		<0.5		<0.5
BH5-0.2-0.3	6/10/2021		150		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5	<0.5		<0.5		<0.5
BH5-0.5-0.6	6/10/2021		454		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5	<0.5		<0.5		<0.5
BH6-0.2-0.3	6/10/2021		<100		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5	<0.5		<0.5		<0.5
BH6-0.4-0.5	6/10/2021		<100		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5	<0.5		<0.5		<0.5
BH7-0.2-0.3	6/10/2021	1	<100		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5	<0.5		<0.5		<0.5
BH7-0.5-0.6	6/10/2021		<100		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5	<0.5		<0.5		<0.5
BH8-0.1-0.2	6/10/2021		<100		<0.5		<0.5		<0.5		<0.5		0.6		0.6	<0.5		<0.5		<0.5
BH8-0.4-0.5	6/10/2021		<100		<0.5		<0.5		<0.5		<0.5		0.5		0.5	<0.5		<0.5		<0.5
BH9-0.1-0.2	6/10/2021		120		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5	<0.5		<0.5		<0.5
BH9-1.9-2.0	6/10/2021	1	<100		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5	<0.5		<0.5		<0.5
BH10-0.1-0.2	6/10/2021	1	<100		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5	<0.5		<0.5		<0.5
BH10-0.4-0.5	6/10/2021		<100		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5	<0.5		<0.5		<0.5
<u> 223 014 015</u>	=1 -=1 -===		1 1200	1		ı	10.5	1	1 .0.5	1	10.5		10.5	1	10.5	1 -0.5	1	10.5	1	.0.5
Statistics																				
Number of Results		1	21	1	21	1	21	1	21	1	21	1	21	1	21	21	1	21	1	21
Number of Detects		0	3	0	0	0	0	0	0	0	0	0	4	0	4	0	0	0	0	0
Minimum Concentratio	on .	<100	<100	<100	<0.5	<1	<0.5	<1	<0.5	<1	<0.5	<1	0.5	<1	0.5	<0.5	<1	<0.5	<1	<0.5
Maximum Concentration		<100	<2,000	<100	<0.5	<1	<0.5	<1	<0.5	<1	<0.5	<1	0.6	<1	0.6	<0.5	<1	<0.5	<1	<0.5
Standard Deviation *	vii .	1,100	234	1200	0.5	`*	0.5	``1	0.5	`-	0.5	`-	0.13	`*	0.13	0	- `-	0.5	`-	0

^{*} A Non Detect Multiplier of 0.5 has been applied.

		PAH																		
		υ ·		Cnrysene	Dibenz(a,h)anthracen	u	-		1	2	Indeno(1,2,3-	c,d)pyrene	40	rnenantnrene		Vyrene	PAHs (Sum)	PAHs (Sum)	ACM - Comment	AF - Comment
		μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg	μg/L	Comment	Comment
EQL		1	0.5	1	0.5	1	0.5	1	0.5	1	0.5	1	0.5	1	0.5	1	0.5	1		
	Generic EIL - Urban Res & Public Open Space																			
NEPM 2013 Table 1A(1)																	300			
	Res A/B Soil HSL for Vapour Intrusion, Sand																			
>=0m, <1m																				
>=1m, <2m																				
>=2m, <4m																				
>=4m																				
Field ID	Date																			
BH1-0.1-0.2	6/10/2021		<0.5	l	<0.5		<0.5		<0.5		<0.5	l	<0.5		<0.5	l	<0.5		1	1
BH1-0.4-0.5	6/10/2021		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		0.6		-	1
BH2-0.3-0.4	6/10/2021		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		0.6		1	1
BH2-0.9-1.0	6/10/2021		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		1	1
BH3-0.1-0.2	6/10/2021		<0.5		<0.5		0.5		<0.5		<0.5		<0.5		<0.5		0.5		1	1
BH3-0.4-0.5	6/10/2021		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		-	-
BH4-0.2-0.3	6/10/2021		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		1	1
BH4-0.4-0.5	6/10/2021		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		-	-
BH5-0.2-0.3	6/10/2021		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		1	1
BH5-0.5-0.6	6/10/2021		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5			
BH6-0.2-0.3	6/10/2021		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		1	1
BH6-0.4-0.5	6/10/2021		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		-	-
BH7-0.2-0.3	6/10/2021		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		1	1
BH7-0.5-0.6	6/10/2021		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5			_
BH8-0.1-0.2	6/10/2021		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		0.6		1	1
BH8-0.4-0.5	6/10/2021		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		0.5			_
BH9-0.1-0.2	6/10/2021		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5			
BH9-1.9-2.0	6/10/2021	1	<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		1	1
BH10-0.1-0.2	6/10/2021	1	<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		1	1
BH10-0.4-0.5	6/10/2021		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5		<0.5			
																			<u>. </u>	
Statistics																				
Number of Results		1	21	1	21	1	21	1	21	1	21	1	21	1	21	1	21	1	11	11
Number of Detects		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	5	0	11	11
Minimum Concentration	1	<1	<0.5	<1	<0.5	<1	0.5	<1	<0.5	<1	<0.5	<1	<0.5	<1	<0.5	<1	0.5	<1	1	1
Maximum Concentration	n	<1	<0.5	<1	<0.5	<1	0.5	<1	<0.5	<1	<0.5	<1	<0.5	<1	<0.5	<1	0.6	<1	1	1
Standard Deviation *			0		0		0.055		0		0		0		0		0.14		0	0

^{*} A Non Detect Multiplier of 0.5 has been applied.

							Asbe	estos								Asbestos Classification and Qu
		Asbestos Reported Result	FA- Comment	Mass ACM	Mass AF	Mass Asbestos in AF	Mass Asbestos in FA & AF	Mass Asbestos in ACM	Mass Asbestos in FA	Mass FA	Synthetic Fibres - Comment	Approximate Sample Mass	Asbestos from ACM in Soil	Organic Fibres - Comment	Respirable Fibres - Comment	Asbestos (Fines and Fibrous FA+AF)
-		Comment	Comment	g	g	g	g	g	g	g	Comment	g	%w/w	Comment	Comment	% (w/w)
EQL																
) Generic EIL - Urban Res & Public Open Space															
NEPM 2013 Table 1A(1																
	Res A/B Soil HSL for Vapour Intrusion, Sand															
>=0m, <1m																
>=1m, <2m																
>=2m, <4m																
>=4m																
Field ID	Date															
BH1-0.1-0.2	6/10/2021	1	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1	51	0.0000	1	1	0.0000
BH1-0.1-0.2 BH1-0.4-0.5	6/10/2021	_	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1	31	0.0000	1	1	0.0000
BH2-0.3-0.4	6/10/2021	1	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1	67	0.0000	1	1	0.0000
BH2-0.9-1.0	6/10/2021	1	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1	42	0.0000	1	1	0.0000
BH3-0.1-0.2	6/10/2021	1	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1	47	0.0000	1	1	0.0000
BH3-0.4-0.5	6/10/2021		-	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1		0.0000	† -	-	0.0000
BH4-0.2-0.3	6/10/2021	1	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1	17	0.0000	1	1	0.0000
BH4-0.4-0.5	6/10/2021		1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1	1,	0.0000	1	-	0.0000
BH5-0.2-0.3	6/10/2021	1	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1	46	0.0000	1	1	0.0000
BH5-0.5-0.6	6/10/2021			0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000			0.0000
BH6-0.2-0.3	6/10/2021	1	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1	51	0.0000	1	1	0.0000
BH6-0.4-0.5	6/10/2021			2.2000										<u> </u>		1
BH7-0.2-0.3	6/10/2021	1	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1	46	0.0000	1	1	0.0000
BH7-0.5-0.6	6/10/2021															
BH8-0.1-0.2	6/10/2021	1	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1	34	0.0000	1	1	0.0000
BH8-0.4-0.5	6/10/2021															
BH9-0.1-0.2	6/10/2021															
BH9-1.9-2.0	6/10/2021	1	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1	38	0.0000	1	1	0.0000
BH10-0.1-0.2	6/10/2021	1	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1	44	0.0000	1	1	0.0000
BH10-0.4-0.5	6/10/2021															
	•	-				•	•	•	•	-			•	•	•	
Statistics																
Number of Results		11	11	11	11	11	11	11	11	11	11	11	11	11	11	11
Number of Detects		11	11	11	11	11	11	11	11	11	11	11	11	11	11	11
Minimum Concentration	on	1	1	0	0	0	0	0	0	0	1	17	0	1	1	0
Maximum Concentration	on	1	1	0	0	0	0	0	0	0	1	67	0	1	1	0
Standard Deviation *		0	0	0	0	0	0	0	0	0	0	12	0	0	0	0

^{*} A Non Detect Multiplier of 0.5 has been applied.

Groundwater gauging data Red Bus Services Depot 682a The Entrance Road, Bateau Bay NSW

Well ID	Date gauged	Well depth	Screen	Top of casing elevation	Depth to water	Depth to LNAPL	Apparent LNAPL thickness	Corrected water elevation
		(mBTOC)	(mBTOC)	(mAHD)	(mBTOC)	(mBTOC)	(m)	(mAHD)
MW4	8/10/2021	11.100			9.030	-	-	
MW6	7/10/2021	11.540			9.010	-	-	
MW9	7/10/2021	11.230			9.050	-	-	
MW10	7/10/2021	11.680			8.760	-	-	
MW11	7/10/2021	11.620			8.820	-	-	
MW12	7/10/2021	11.720			8.870	-	-	
MW13	7/10/2021	11.450			8.980	-	-	
MW14	7/10/2021	11.430			9.030	-	-	
MW15	7/10/2021	11.480			9.030	-	-	
MW16	7/10/2021	10.900			8.960	-	-	
MW17	7/10/2021	11.830			8.950		-	
MW19	7/10/2021	11.000			8.840		-	
MW20	8/10/2021	9.800			9.000			
MW21	8/10/2021	11.450			8.950			
MW23	8/10/2021	11.360			9.070			
MW26	8/10/2021	11.440			9.000			
MW30	8/10/2021	11.630			9.110			
MW31	8/10/2021	9.450			DRY			
MW32	8/10/2021	12.350			8.940			
MW33	8/10/2021	12.200			8.900			
MW34	8/10/2021	12.050			8.880			

Groundwater quality parameters Red Bus Services Depot 682a The Entrance Road, Bateau Bay NSW

Well ID	Date gauged	pН	Electrical conductivity	Redox (measured)	Redox (corrected)	Dissolved oxygen	Temperature
			(µS/cm)	(mV)	(mV)	(ppm)	(°C)
MW4	8/10/2021	6.23	497	-38.2	160.8	0.53	20.1
MW6	7/10/2021	5.79	418	-85.0	114.0	1.19	22.0
MW9	7/10/2021	6.40	330	83.0	282.0	1.56	21.8
MW 10	7/10/2021	5.22	339	150.9	349.9	1.94	23.6
MW 11	7/10/2021	5.19	300	201.2	400.2	1.99	22.4
MW 12	7/10/2021	4.76	197	203.4	402.4	1.52	19.8
MW 13	7/10/2021	6.39	153	152.5	351.5	1.15	20.0
MW 14	7/10/2021	4.57	233	176.4	375.4	3.45	20.8
MW 15	7/10/2021	4.45	173	196.8	395.8	2.60	21.8
MW 16	7/10/2021	6.08	300	92.6	291.6	1.47	22.0
MW 17	7/10/2021	4.37	301	220.0	419.0	4.04	21.7
MW 19	7/10/2021	4.61	423	170.7	369.7	3.62	21.0
MW 20	8/10/2021	4.61	174	155.5	354.5	1.56	24.7
MW 21	8/10/2021	5.26	415	-35.5	163.5	1.49	23.1
MW 23	8/10/2021	5.80	421	48.7	247.7	1.65	22.6
MW26	8/10/2021	5.70	315	110.0	309.0	4.74	21.3
MW 30	8/10/2021	4.59	234	128.3	327.3	1.94	23.5
MW 32	8/10/2021	6.12	466	-30.0	169.0	2.06	23.5
MW 33	8/10/2021	6.19	469	-47.1	151.9	1.20	24.4
MW 34	8/10/2021	6.41	253	-2.3	196.7	1.74	23.2

Notes

Redox: Reduction-oxidation potential - corrected by adding 199 mV to the measured value

		Monocyclic Aromatic Hydrocarbo	IWRG Combined Compounds				Me	etals						ВТЕ	ΞX				TPH (N	IEPM 1999 Fra	action)
		Naphthalene (MAH)	Chlorinated hydrocarbons	Arsenic (filtered)	Cadmium (filtered)	Chromium (filtered)	Copper (filtered)	Lead (filtered)	Mercury (filtered)	Nickel (filtered)	Zinc (filtered)	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Xylene (Sum)	67 - 93	C10 - C14	C15 - C28	C29 - C36
		μg/L	-	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
EQL		10	0.005	1	0.2	1	1	1	0.1	1	5	1	1	1	2	1	3	20	50	100	100
ADWG 2011 (May 20:	19 Update) - Health			10	2		2,000	10	1	20		1	800	300			600				
NHMRC 2008 - Recrea	ational Waters ADWG 2018			10	2		20,000	100	10	200		10	8,000	3,000			6,000				,
NEPM 2013 Table 1A((4) Res HSL A & B GW for Vapour	Intrusion, Sand										800 800 900									
>=8m												900									
NEPM 2013 Table 1C	GILs, Fresh Waters				0.2		1.4	3.4	0.06	11	8	950				350					
Field ID	Date																				
MW4	8/10/2021	40	<0.005	6	<0.2	<1	<1	<1	<0.1	<1	<5	<1	<1	4	3	4	8	30	2,500	4,900	400
MW6	7/10/2021	10	< 0.005	21	<0.2	2	<1	<1	<0.1	<1	<5	<1	<1	3	<2	1	<3	40	7,300	26,000	400
MW9	7/10/2021	20	<0.005	<1	<0.2	<1	<1	1	<0.1	<1	22	<1	<1	<1	4	7	11	40	490	1,100	<100
MW10	7/10/2021	<10	<0.005	<1	<0.2	<1	2	<1	<0.1	<1	5	<1	<1	<1	<2	<1	<3	30	2,100	9,700	100
MW11	7/10/2021	<10	<0.005	2	<0.2	<1	2	<1	<0.1	<1	7	<1	<1	<1	<2	<1	<3	<20	1,500	7,400	<100
MW12	7/10/2021	<10	<0.005	<1	<0.2	<1	<1	<1	<0.1	<1	<5	<1	<1	<1	<2	<1	<3	<20	<50	<100	<100
MW13	7/10/2021	<10	<0.005	<1	<0.2	<1	<1	<1	<0.1	<1	<5	<1	<1	<1	<2	4	5	<20	600	600	<100
MW14	7/10/2021	<10	<0.005	<1	<0.2	<1	<1	<1	0.3	<1	8	<1	<1	<1	<2	<1	<3	<20	<50	<100	<100
MW15	7/10/2021	<10	<0.005	<1	<0.2	<1	2	<1	<0.1	<1	<5	<1	<1	<1	<2	<1	<3	<20	<50	<100	<100
MW16	7/10/2021	<10	<0.005	1	<0.2	<1	<1	<1	<0.1	2	5	<1	<1	<1	<2	<1	<3	<20	<50	<100	<100
MW17	7/10/2021	<10	<0.005	<1	<0.2	<1	2	<1	0.2	<1	24	<1	<1	<1	<2	<1	<3	<20	<50	<100	<100
MW19	7/10/2021	<10	<0.005	<1	<0.2	<1	1	1	0.4	<1	6	<1	<1	<1	<2	<1	<3	<20	190	<100	<100
MW20	8/10/2021	<10	<0.005	<1	<0.2	<1	2	<1	<0.1	<1	<5	<1	<1	<1	<2	<1	<3	<20	<50	200	<100
MW21	8/10/2021	30	<0.005	21	<0.2	<1	<1	<1	<0.1	<1	17	<1	<1	2	<2	12	12	<20	140	<100	<100
MW23	8/10/2021	<10	<0.005	5	<0.2	<1	<1	<1	<0.1	<1	<5	<1	<1	1	<2	<1	<3	30	720	1,200	<100
MW26	8/10/2021	<10	<0.005	<1	<0.2	<1	4	<1	<0.1	<1	9	<1	<1	<1	<2	<1	<3	<20	<50	<100	<100
MW30	8/10/2021	<10	<0.005	<1	<0.2	<1	<1	<1	0.8	<1	<5	<1	<1	<1	<2	<1	<3	<20	<50	<100	<100
MW32	8/10/2021	20	<0.005	8	<0.2	<1	<1	<1	<0.1	<1	17	<1	<1	4	3	2	4	30	12,000	53,000	500
MW33	8/10/2021	70	<0.005	26	<0.2	<1	<1	<1	<0.1	<1	<5	<1	<1	11	5	21	26	90	<50	<100	<100
MW34	8/10/2021	40	<0.005	6	<0.2	<1	<1	<1	<0.1	<1	12	<1	<1	2	<2	<1	<3	30	2,500	7,300	<100
QA01	7/10/2021	<10	<0.005	<1	<0.2	<1	1	1	0.4	<1	6	<1	<1	<1	<2	<1	<3	<20	<50	<100	<100
RB02	8/10/2021	1	10.000	<1	<0.2	<1	<1	<1	<0.1	<1	<5		`-	`*	`-	`*		120	- 50	1100	-1200
TB01	8/10/2021	<10	1	- `-	-0.2	**	- `-	``	10.1	``_	,	<1	<1	<1	<2	<1	<3	<20			
1501	10/10/2021	II				<u> </u>		1		<u> </u>		`*	`1	`*	``_	``	,	```	1	<u> </u>	
Statistics																					
Number of Results		22	21	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	21	21	21
Number of Detects		7	0	9	0	1	8	3	5	1	12	0	0	7	4	7	6	8	11	10	4
Minimum Concentrat	tion	10	<0.005	1	<0.2	<1	1	1	<0.1	<1	5	<1	<1	1	<2	1	<3	<20	<50	<100	100
Maximum Concentrat		70	<0.005	26	<0.2	2	4	1	0.8	2	24	<1	<1	11	5	21	26	90	12,000	53,000	500
Standard Deviation *	· · · · · · · · · · · · · · · · · · ·	17	0	7.7	0	0.32	0.91	0.18	0.19	0.32	6.7	0	0	2.4	1.1	5	5.8	19	2,949	12,485	138
* A Non Detect Multir			П 0	ı ,.,		0.32	0.51	0.10	0.13	0.32	0.7			2.7	1.1	,	J.0	1 29	2,373	12,703	130

^{*} A Non Detect Multiplier of 0.5 has been applied.

					TRH (N	IEPM 2013 Fraction	1)														
		210 - C36 (Sum)	.6 - C10	C6 - C10 less BTEX [F1)	C10 - C16	C10 - C16 less Naphthalene (F2)	.16 - C34	.34 - C40	210 - C40 (Sum)	1,1,1,2- tetrachloroethane	1,1,1-trichloroethane	1,1,2,2- tetrachloroethane	.,1,2-trichloroethane	.,1-dichloroethane	.,1-dichloroethene	1,2,3- trichloropropane	1,2,4- trimethylbenzene	1,2-dibromoethane	1,2-dichlorobenzene	,,2-dichloroethane	1,2-dichloropropane
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
EQL		100	20	20	50	50	100	100	100	1	1	1	1	1	1	1	1	1	1	1	1
ADWG 2011 (May 201	9 Update) - Health														30			1	1,500	3	
NHMRC 2008 - Recreat	tional Waters ADWG 2018																		1,500		
NEPM 2013 Table 1A(4	l) Res HSL A & B GW for Vapour In			1,000 1,000 1,000		1,000 1,000 1,000															
>=8m				1,000		1,000															
NEPM 2013 Table 1C G	ILs, Fresh Waters												6,500						160		
												_									
Field ID	Date																				
MW4	8/10/2021	7,800	180	170	3,800	3,760	3,700	<100	7,500	<1	<1	<1	<1	<1	<1	<1	22	<1	<1	<1	<1
MW6	7/10/2021	33,700	120	120	14,000	13,990	20,000	<100	34,000	<1	<1	<1	<1	<1	<1	<1	21	<1	<1	<1	<1
MW9	7/10/2021	1,590	200	190	760	740	800	<100	1,560	<1	<1	<1	<1	<1	<1	<1	41	<1	<1	<1	<1
MW10	7/10/2021	11,900	70	70	4,600	4,600	7,500	<100	12,100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW11	7/10/2021	8,900	40	40	4,200	4,200	5,000	<100	9,200	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW12	7/10/2021	<100	30	30	<50	<50	<100	<100	<100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW13	7/10/2021	1,200	80	80	1,100	1,100	200	<100	1,300	<1	<1	<1	<1	<1	<1	<1	4	<1	<1	<1	<1
MW14	7/10/2021	<100	<20	<20	<50	<50	<100	<100	<100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW15	7/10/2021	<100	<20	<20	<50	<50	<100	<100	<100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW16	7/10/2021	<100	<20	<20	<50	<50	<100	<100	<100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW17	7/10/2021	<100	<20	<20	<50	<50	<100	<100	<100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW19	7/10/2021	190	<20	<20	80	80	<100	<100	<100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW20	8/10/2021	200	<20	<20	<50	<50	100	<100	100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW21	8/10/2021	140	110	100	220	190	<100	<100	220	<1	<1	<1	<1	<1	<1	<1	7	<1	<1	<1	<1
MW23	8/10/2021	1,920	110	110	1,600	1,600	600	<100	2,200	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW26	8/10/2021	<100	<20	<20	<50	<50	<100	<100	<100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW30	8/10/2021	<100	<20	<20	<50	<50	<100	<100	<100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
MW32	8/10/2021	65,500	100	90	23,000	22,980	40,000	<100	63,000	<1	<1	<1	<1	<1	<1	<1	16	<1	<1	<1	<1
MW33	8/10/2021	<100	280	240	<50	<50	<100	<100	<100	<1	<1	<1	<1	<1	<1	<1	64	<1	<1	<1	<1
MW34	8/10/2021	9,800	90	90	5,200	5,160	4,800	<100	10,000	<1	<1	<1	<1	<1	<1	<1	22	<1	<1	<1	<1
QA01	7/10/2021	<100	<20	<20	<50	<50	<100	<100	<100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
RB02	8/10/2021																				
TB01	8/10/2021		<20	<20																	
Statistics																					
Number of Results		21	22	22	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
Number of Detects		12	12	12	11	11	10	0	11	0	0	0	0	0	0	0	8	0	0	0	0
Minimum Concentrati	on	<100	<20	<20	<50	<50	100	<100	100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
								1			!				.		-		+ +		
Maximum Concentrati	ion	65,500	280	240	23,000	22,980	40,000	<100	63,000	<1	<1	<1	<1	<1	<1	<1	64	<1	<1	<1	<1
Standard Deviation *		15,546	75	68	5,679	5,674	9,458	0	15,109	0	0	0	0	0	0	0	17	0	0	0	0

^{*} A Non Detect Multiplier of 0.5 has been applied.

	f																					
			Γ	1									voc		<u> </u>			1	6 1			
		1,3,5- trimethylbenzene	1,3-dichlorobenzene	1,3-dichloropropane	1,4-dichlorobenzene	2-butanone (MEK)	4-chlorotoluene	4-methyl-2- pentanone (MIBK)	Acetone	Allyl chloride	Bromobenzene	Bromochloromethan e	Bromodichlorometha ne	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chlorodibromometha ne	Chloroethane	Chloroform	Chloromethane
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
EQL		1	1	1	1	5	1	5	5	1	1	1	1	1	5	1	1	1	1	5	5	5
ADWG 2011 (May 2019 U	pdate) - Health				40										1		3	300				
NHMRC 2008 - Recreation	al Waters ADWG 2018																					
NEPM 2013 Table 1A(4) Re	es HSL A & B GW for Vapour In																					
>=8m																						1
NEPM 2013 Table 1C GILs,	Fresh Waters		260		60																	
Field ID	Date																					
MW4	8/10/2021	15	-21		-21						-21			-21	∠ E	21	21	-1	-1	√ E	√ E	_E
MW6	7/10/2021	15	<1 <1	<1 <1	<1	<5 <5	<1 <1	<5 <5	<5 <5	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<5 <5	<1 <1	<1 <1	<1 <1	<1 <1	<5 <5	<5 <5	<5 <5
MW9	7/10/2021	23	<1	<1		<5	<1	<5	<5	<1	<1				<5		<1	<1	<1	<5 <5	<5 <5	<5
MW10	7/10/2021	<1	<1	<1	<1 <1	<5	<1	<5	<5	<1	<1	<1	<1 <1	<1 <1	<5	<1 <1	<1	<1	<1	<5 <5	<5 <5	<5 <5
MW11	7/10/2021	2	<1			<5		<5	<5			<1			<5							
MW12	7/10/2021	1	<1	<1	<1	<5	<1	<5	<5	<1	<1 <1	<1	<1	<1		<1	<1	<1	<1	<5 <5	<5 <5	<5 <5
MW13	7/10/2021	10	<1	<1 <1	<1 <1	<5	<1 <1	<5	<5	<1 <1	<1	<1 <1	<1 <1	<1 <1	<5 <5	<1 <1	<1 <1	<1 <1	<1 <1	<5 <5	<5 <5	<5
MW14	7/10/2021	<1	<1	<1	<1	<5	<1	<5	<5	<1	<1	<1	<1	<1	<5	<1	<1	<1	<1	<5	<5	<5
MW15	7/10/2021	<1	<1	<1	<1	<5	<1	<5	<5	<1	<1	<1	<1	<1	<5	<1	<1	<1	<1	<5 <5	<5 <5	<5
MW16	7/10/2021	<1	<1	<1	<1	<5	<1	<5	<5	<1	<1	<1	<1	<1	<5	<1	<1	<1	<1	<5 <5	<5 <5	<5
MW17	7/10/2021	<1	<1	<1	<1	<5	<1	<5	<5	<1	<1	<1	<1	<1	<5	<1	<1	<1	<1	<5	<5	<5
MW19	7/10/2021	<1	<1	<1	<1	<5	<1	<5	<5	<1	<1	<1	<1	<1	<5	<1	<1	<1	<1	<5 <5	<5 <5	<5
MW20	8/10/2021	<1	<1	<1	<1	<5	<1	<5	<5	<1	<1	<1	<1	<1	<5	<1	<1	<1	<1	<5 <5	<5 <5	<5
MW21	8/10/2021 8/10/2021	12	<1	<1	<1	<5	<1	<5	<5	<1	<1	<1	<1	<1	<5	<1	<1	<1	<1	<5 <5	<5 <5	<5
MW23	8/10/2021	7	<1	<1	<1	<5	<1	<5	<5	<1	<1	<1	<1	<1	<5	<1	<1	<1	<1	<5 <5	<5 <5	<5
MW26	8/10/2021	<1	<1	<1	<1	<5	<1	<5	<5	<1	<1	<1	<1	<1	<5	<1	<1	<1	<1	<5 <5	<5 <5	<5
MW30	8/10/2021	<1	<1	<1	<1	<5	<1	<5	<5	<1	<1	<1	<1	<1	<5	<1	<1	<1	<1	<5	<5	<5
MW32	8/10/2021	10	<1	<1	<1	<5	<1	<5	<5	<1	<1	<1	<1	<1	<5	<1	<1	<1	<1	<5	<5	<5
MW33	8/10/2021	27	<1	<1	<1	<5	<1	<5	<5	<1	<1	<1	<1	<1	<5	<1	<1	<1	<1	<5	<5	<5
MW34	8/10/2021	9	<1	<1	<1	<5	<1	<5	<5	<1	<1	<1	<1	<1	<5	<1	<1	<1	<1	<5 <5	<5 <5	<5 <5
QA01	7/10/2021	<1	<1	<1	<1	<5	<1	<5	<5	<1	<1	<1	<1	<1	<5	<1	<1	<1	<1	<5	<5	<5
RB02	8/10/2021									\ <u>``</u>	/1		\ <u>``</u>				<u> </u>				\)	
TB01	8/10/2021																					
1001	0/ 10/ 2021		<u>I</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>	1	l		<u> </u>	I				
Statistics																						
Number of Results		21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
Number of Detects		11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Minimum Concentration		1	<1	<1	<1	<5	<1	<5	<5	<1	<1	<1	<1	<1	<5	<1	<1	<1	<1	<5	<5	<5
Maximum Concentration		27	<1	<1	<1	<5	<1	<5	<5	<1	<1	<1	<1	<1	<5	<1	<1	<1	<1	<5	<5	<5
Standard Deviation *		8.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

^{*} A Non Detect Multiplier of 0.5 has been applied.

		cis-1,2- dichloroethene	cis-1,3- dichloropropene	Dibromomethane	Dichlorodifluoromet hane	Dichloromethane	Iodomethane	Isopropylbenzene	Styrene	TCE	Tetrachloroethene	trans-1,2- dichloroethene	trans-1,3- dichloropropene	Trichlorofluorometha ne	Vinyl chloride
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
EQL		1	1	1	1	5	1	1	1	1	1	1	1	5	5
ADWG 2011 (May 2019 Upda	•					4			30		50				0.3
NHMRC 2008 - Recreational W	/aters ADWG 2018														
NEPM 2013 Table 1A(4) Res H	SL A & B GW for Vapour In														
>=8m															
NEPM 2013 Table 1C GILs, Fre	sh Waters														
												· · · · · · · · · · · · · · · · · · ·			
Field ID D	ate														
	/10/2021	<1	<1	<1	<1	<5	<1	3	<1	<1	<1	<1	<1	<5	<5
	/10/2021	<1	<1	<1	<1	<5	<1	2	<1	<1	<1	<1	<1	<5	<5
MW9 7,	/10/2021	<1	<1	<1	<1	<5	<1	2	<1	<1	<1	<1	<1	<5	<5
MW10 7,	/10/2021	<1	<1	<1	<1	<5	<1	<1	<1	<1	<1	<1	<1	<5	<5
	/10/2021	<1	<1	<1	<1	<5	<1	<1	<1	<1	<1	<1	<1	<5	<5
	/10/2021	<1	<1	<1	<1	<5	<1	<1	<1	<1	<1	<1	<1	<5	<5
	/10/2021	<1	<1	<1	<1	<5	<1	1	<1	<1	<1	<1	<1	<5	<5
MW14 7,	/10/2021	<1	<1	<1	<1	<5	<1	<1	<1	<1	<1	<1	<1	<5	<5
MW15 7/	/10/2021	<1	<1	<1	<1	<5	<1	<1	<1	<1	<1	<1	<1	<5	<5
	/10/2021	<1	<1	<1	<1	<5	<1	<1	<1	<1	<1	<1	<1	<5	<5
	/10/2021	<1	<1	<1	<1	<5	<1	<1	<1	<1	<1	<1	<1	<5	<5
	/10/2021	<1	<1	<1	<1	<5	<1	<1	<1	<1	<1	<1	<1	<5	<5
	/10/2021	<1	<1	<1	<1	<5	<1	<1	<1	<1	<1	<1	<1	<5	<5
	/10/2021	<1	<1	<1	<1	<5	<1	1	<1	<1	<1	<1	<1	<5	<5
	/10/2021	<1	<1	<1	<1	<5	<1	2	<1	<1	<1	<1	<1	<5	<5
	/10/2021	<1	<1	<1	<1	<5	<1	<1	<1	<1	<1	<1	<1	<5	<5
	/10/2021	<1	<1	<1	<1	<5	<1	<1	<1	<1	<1	<1	<1	<5	<5
	/10/2021	<1	<1	<1	<1	<5	<1	2	<1	<1	<1	<1	<1	<5	<5
MW33 8/	/10/2021	<1	<1	<1	<1	<5	<1	4	<1	<1	<1	<1	<1	<5	<5
	/10/2021	<1	<1	<1	<1	<5	<1	3	<1	<1	<1	<1	<1	<5	<5
	/10/2021	<1	<1	<1	<1	<5	<1	<1	<1	<1	<1	<1	<1	<5	<5
	/10/2021						_	_	_	_	_		_		
	/10/2021				1										
10)	,,					·	1	1	1	1	1		1	1	
Statistics			,												
Number of Results		21	21	21	21	21	21	21	21	21	21	21	21	21	21
Number of Detects	0	0	0	0	0	0	9	0	0	0	0	0	0	0	
Minimum Concentration	<1	<1	<1	<1	<5	<1	1	<1	<1	<1	<1	<1	<5	<5	
Maximum Concentration	<1	<1	<1	<1	<5	<1	4	<1	<1	<1	<1	<1	<5	<5	
Standard Deviation *		0	0	0	0	0	0	1.1	0	0	0	0	0	0	0
Standard Deviation		U	U	U				1.1		U	U		U		

^{*} A Non Detect Multiplier of 0.5 has been applied.

APPENDIX E

QAQC TABLES

				Monocyclic Aromatic Hydrocarbo	Physicochemical parameters				Me				ВТЕХ						
				Naphthalene (MAH)	% Moisture	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Xylene (Sum)
				mg/kg	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL				0.5	1	2	0.4	2	5	5	0.1	2	5	0.1	0.1	0.1	0.2	0.1	0.3
Lab Report Number	Field ID	Matrix Type	Date																
831991	BH2-0.3-0.4	Soil	6/10/2021	<0.5	8.7	2.4	<0.4	9.0	<5	5.5	<0.1	<5	15	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3
	QA03	Soil	6/10/2021	<0.5	7.1	6.9	<0.4	28	9.5	15	<0.1	9.4	61	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3
RPD				0	20	97	0	103	62	93	0	61	121	0	0	0	0	0	0
831991	BH2-0.3-0.4	Soil	6/10/2021	<0.5	8.7	2.4	<0.4	9.0	<5	5.5	<0.1	<5	15	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3
ES2137105	QA03a	Soil	6/10/2021		18.9	<5	<1	11	5	7	<0.1	4	26	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5
RPD			_		74	0	0	20	0	24	0	0	54	0	0	0	0	0	0

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 100 (5 - 10 x EQL); 50 (10 - 30 x EQL); 30 (> 30 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

						трн (м	IEPM 1999 Fra	action)				TRH (N	NEPM 2013 Fr	action)					
				Naphthalene	60 - 90	C10 - C14	C15 - C28	C29 - C36	C10 - C36 (Sum)	C6 - C10	C6 - C10 less BTEX (F1)	C10 - C16	C10 - C16 less Naphthalene (F2)	C16 - C34	C34 - C40	C10 - C40 (Sum)	Acenaphthene	Acenaphthylene	Anthracene
				mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL			<u> </u>	0.5	10	20	50	50	50	10	10	50	50	100	100	50	0.5	0.5	0.5
Lab Report Number	Field ID	Matrix Type	Date			·													
831991	BH2-0.3-0.4	Soil	6/10/2021	<0.5	<20	<20	<50	<50	<50	<20	<20	<50	<50	<100	<100	<100	<0.5	<0.5	<0.5

Lab Report Number	Field ID	Matrix Type	Date																
831991	BH2-0.3-0.4	Soil	6/10/2021	<0.5	<20	<20	<50	<50	<50	<20	<20	<50	<50	<100	<100	<100	<0.5	<0.5	<0.5
	QA03	Soil	6/10/2021	<0.5	<20	<20	<50	<50	<50	<20	<20	<50	<50	<100	<100	<100	<0.5	<0.5	<0.5
RPD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
831991	BH2-0.3-0.4	Soil	6/10/2021	<0.5	<20	<20	<50	<50	<50	<20	<20	<50	<50	<100	<100	<100	<0.5	<0.5	<0.5
ES2137105	QA03a	Soil	6/10/2021	<0.5	<10	<50	<100	<100	<50	<10	<10	<50	<50	<100	<100	<50	<0.5	<0.5	<0.5
RPD				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range a

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods

						РАН										
	Benz(a)anthracene	Benzo(a) pyrene	Benzo(a)pyrene TEQ calc (Zero)	Benzo(b&j)fluoranthe ne	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracen e	Fluoranthene	Fluorene	Indeno(1,2,3- c,d)pyrene	Phenanthrene	Pyrene	PAHs (Sum)	ACM - Comment	AF - Comment
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	Comment	Comment
EQL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		

Lab Report Number	Field ID	Matrix Type	Date																
831991	BH2-0.3-0.4	Soil	6/10/2021	<0.5	0.6	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1	1
	QA03	Soil	6/10/2021	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
RPD				0	18	18	0	0	0	0	0	0	0	0	0	0	18		
831991	BH2-0.3-0.4	Soil	6/10/2021	<0.5	0.6	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1	1
ES2137105	QA03a	Soil	6/10/2021	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
RPD				0	18	18	0	0	0	0	0	0	0	0	0	0	18		

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range a

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods

									Asbe	estos								Asbestos Classification and Qu
				Asbestos Reported Result	FA- Comment	Mass ACM	Mass AF	Mass Asbestos in AF	Mass Asbestos in FA & AF	Mass Asbestos in ACM	Mass Asbestos in FA	Mass FA	Synthetic Fibres - Comment	Approximate Sample Mass	Asbestos from ACM in Soil	Organic Fibres -	Respirable Fibres - Comment	Asbestos (Fines and Fibrous FA+AF)
EQL				Comment	Comment	g	<u>g</u>	<u>g</u>	g g	g	<u> g </u>	<u>g</u>	Comment	g	%w/w	Comment	Comment	% (w/w)
Lab Report Number	Field ID	Matrix Type	Date	-														
831991	BH2-0.3-0.4	Soil	6/10/2021	1	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1	67	0.0000	1	1	0.0000
l	QA03	Soil	6/10/2021															
RPD		•																
	BH2-0.3-0.4	Soil	6/10/2021	1	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1	67	0.0000	1	1	0.0000
831991	BHZ-0.3-0.4	3011	0/10/2021	1		0.000	0.0000	0.0000	0.0000	0.000	0.0000	0.0000	-	07	0.0000			0.0000

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range a

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods

				Monocyclic Aromatic Hydrocarbo	IWRG Combined Compounds				Me	tals							втех		
				Naphthalene (MAH)	Chlorinated hydrocarbons	Arsenic (filtered)	Cadmium (filtered)	Chromium (filtered)	Copper (filtered)	Lead (filtered)	Mercury (filtered)	Nickel (filtered)	Zinc (filtered)	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Xylene (Sum)
				μg/L	-	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
EQL				10	0.005	1	0.1	1	1	1	0.1	1	5	1	1	1	2	1	2
Lab Report Number	Field ID	Matrix Type	Date																
831781	MW19	Water	7/10/2021	<10	<0.005	<1	<0.2	<1	1	1	0.4	<1	6	<1	<1	<1	<2	<1	<3
	QA01	Water	7/10/2021	<10	<0.005	<1	<0.2	<1	1	1	0.4	<1	6	<1	<1	<1	<2	<1	<3
RPD				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
831781	MW19	Water	7/10/2021	<10	<0.005	<1	<0.2	<1	1	1	0.4	<1	6	<1	<1	<1	<2	<1	<3
ES2137105	QA01a	Water	7/10/2021			<1	<0.1	<1	<1	<1	0.4	<1	<5	<1	<2	<2	<2	<2	<2
RPD						0	0	0	0	0	0	0	18	0	0	0	0	0	0

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 100 (5 - 10 x EQL); 50 (10 - 30 x EQL); 30 (> 30 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

						трн (м	IEPM 1999 Fra	action)				TRH (N	IEPM 2013 Fr	action)					
				Naphthalene	67 - 93	C10 - C14	C15 - C28	C29 - C36	C10 - C36 (Sum)	C6 - C10	C6 - C10 less BTEX (F1)	C10 - C16	C10 - C16 less Naphthalene (F2)	C16 - C34	C34 - C40	C10 - C40 (Sum)	1,1,1,2- tetrachloroethane	1,1,1-trichloroethane	1,1,2,2- tetrachloroethane
				μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
EQL				5	20	50	100	50	50	20	20	50	50	100	100	100	1	1	1
Lab Report Number	Field ID	Matrix Type	Date																
831781	MW19	Water	7/10/2021		<20	190	<100	<100	190	<20	<20	80	80	<100	<100	<100	<1	<1	<1
	QA01	Water	7/10/2021		<20	<50	<100	<100	<100	<20	<20	<50	<50	<100	<100	<100	<1	<1	<1
RPD		<u> </u>	<u> </u>		0	117	0	0	62	0	0	46	46	0	0	0	0	0	0
831781	MW19	Water	7/10/2021		<20	190	<100	<100	190	<20	<20	80	80	<100	<100	<100	<1	<1	<1
ES2137105	QA01a	Water	7/10/2021	<5	<20	<50	<100	<50	<50	<20	<20	<100	<100	<100	<100	<100	<5	<5	<5
RPD					0	117	0	0	117	0	0	0	0	0	0	0	0	0	0

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range a

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods

				1,1,2-trichloroethane	1,1-dichloroethane	1,1-dichloroethene	1,1-dichloropropene	1,2,3- trichlorobenzene	1,2,3- trichloropropane	1,2,4- trichlorobenzene	1,2,4- trimethylbenzene	1,2-dibromo-3- :hloropropane	1,2-dibromoethane	1,2-dichlorobenzene	1,2-dichloroethane	1,2-dichloropropane	1,3,5- trimethylbenzene	l,3-dichlorobenzene	1,3-dichloropropane
				μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
EQL				1	1	1	5	5	1	5	1	5	1	1	1	1	1	1	1
Lab Report Number	Field ID	Matrix Type	Date																
831781	MW19	Water	7/10/2021	<1	<1	<1			<1		<1		<1	<1	<1	<1	<1	<1	<1
	QA01	Water	7/10/2021	<1	<1	<1			<1		<1		<1	<1	<1	<1	<1	<1	<1
RPD				0	0	0			0		0		0	0	0	0	0	0	0
831781	MW19	Water	7/10/2021	<1	<1	<1			<1		<1		<1	<1	<1	<1	<1	<1	<1
ES2137105	QA01a	Water	7/10/2021	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
RPD		·	·	0	0	0			0		0		0	0	0	0	0	0	0

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range a

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods

														_		V	ос		
				1,4-dichlorobenzene	2,2-dichloropropane	2-butanone (MEK)	2-chlorotoluene	2-hexanone (MBK)	4-chlorotoluene	4-methyl-2- pentanone (MIBK)	Acetone	Allyl chloride	Bromobenzene	Bromochloromethan e	Bromodichlorometha ne	Bromoform	Bromomethane	Carbon disulfide	Carbon tetrachloride
				μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
EQL				1	5	5	5	50	1	5	5	1	1	1	1	1	5	1	1
Lab Report Number	Field ID	Matrix Type	Date																
831781	MW19	Water	7/10/2021	<1		<5			<1	<5	<5	<1	<1	<1	<1	<1	<5	<1	<1
	QA01	Water	7/10/2021	<1		<5			<1	<5	<5	<1	<1	<1	<1	<1	<5	<1	<1
RPD		<u> </u>		0		0			0	0	0	0	0	0	0	0	0	0	0
831781	MW19	Water	7/10/2021	<1		<5			<1	<5	<5	<1	<1	<1	<1	<1	<5	<1	<1
ES2137105	QA01a	Water	7/10/2021	<5	<5	<50	<5	<50	<5	<50			<5		<5	<5	<50	<5	<5
RPD				0		0			0	0			0		0	0	0	0	0

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range a

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods

				Chlorobenzene	Chlorodibromometha	Chloroethane	Chloroform	Chloromethane	cis-1,2- dichloroethene	cis-1,3- dichloropropene	cis-1,4-Dichloro-2- butene	Dibromomethane	Dich lorodifiuoromet hane	Dichloromethane	Hexachlorobutadiene	odomethane	Isopropylbenzene	n-butylbenzene	n-propylbenzene
				μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
EQL				1	1	5	5	5	1	1	5	1	1	5	5	1	1	5	5
Lab Report Number	Field ID	Matrix Type	Date																
831781	MW19	Water	7/10/2021	<1	<1	<5	<5	<5	<1	<1		<1	<1	<5		<1	<1		
	QA01	Water	7/10/2021	<1	<1	<5	<5	<5	<1	<1		<1	<1	<5		<1	<1		
RPD				0	0	0	0	0	0	0		0	0	0		0	0		
831781	MW19	Water	7/10/2021	<1	<1	<5	<5	<5	<1	<1		<1	<1	<5		<1	<1		
ES2137105	QA01a	Water	7/10/2021	<5	<5	<50	<5	<50	<5	<5	<5	<5	<50		<5	<5	<5	<5	<5
PDD	-	•		0	0	0	0	0	0	^		Λ	0			0	٥		

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range a

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods

					ı				Γ	ı		Γ		-		
				Pentachloroethane	p-isopropyltoluene	sec-butylbenzene	Styrene	rce	ert-butylbenzene	Tetrachloroethene	trans-1,2- dichloroethene	trans-1,3- dichloropropene	trans-1,4-Dichloro-2- butene	richlorofluorometha ne	/inyl acetate	/inyl chloride
				μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
EQL				5	5	5	1	1	5	1	1	1	5	5	50	5
	ב: - וא וה	Matrix True	Dete	<u> </u>												<u></u>
Lab Report Number	Field ID	Matrix Type	Date						ı			ı				
831781	MW19	Water	7/10/2021				<1	<1		<1	<1	<1		<5		<5
	QA01	Water	7/10/2021				<1	<1		<1	<1	<1		<5		<5

Lab report Humber	I ICIU ID	WIGHT TYPE	Dutc													
831781	MW19	Water	7/10/2021				<1	<1		<1	<1	<1		<5		<5
	QA01	Water	7/10/2021				<1	<1		<1	<1	<1		<5		<5
RPD							0	0		0	0	0		0		0
831781	MW19	Water	7/10/2021				<1	<1		<1	<1	<1		<5		<5
ES2137105	QA01a	Water	7/10/2021	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50	<50	<50
RPD							0	0		0	0	0		0		0

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range a

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods

APPENDIX F BORELOGS

BOREHOLE NO.

BH01

SHEET 1 OF 1

10/5/21

10/5/21

JW

RL

Date Commenced:

Date Completed:

Client: **Red Bus Company Services**

Project: **Groundwater Sampling and Site Assessment Report**

Borehole Location: 682A Coleridge Rd, Bateau Bay NSW 2261 Recorded By: Project Number: PS126618 Log Checked By:

Drill Model/Mounting: Comacchio-Matrix Driller: Surface RL:

	eh	ole	e Di	ameter: 100 mr				Drille	er Lic No: Co-ord				
				Borehole Infor					Field Mater		200	rintion	
	2	2	3	4	5	6	7	8	9 10	iai L	11	12	13
METHOD	SUPPORT		WATER	WELL CONSTRUCTION	RL(m) DEPTH(m)	Field PID (ppm)	SAMPLE	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	Field pH	MOISTURE	RELATIVE DENSITY /CONSISTENCY BL S O L S S	STRUCTURE AND ADDITIONAL OBSERVATIONS
HA					0.20 —-	0.1	J+B		NATURAL	-			──BH01_0.1-0.2
					0.5	. 0.1	J+B		SAND; grey, medium to coarse grained, becoming orange with depths.				——ВН01_0.4-0.5
					1.0 1.00-1	0.1	J+B		Target depth reached at 1.00 m	_			 ВН01_0.9-1.0
						-			raiget deputi leached at 1.00 III				
									I in conjunction with WSP's accompanying				

BOREHOLE NO.

BH02

SHEET 1 OF 1

10/5/21

10/5/21

JW

RL

Date Commenced:

Date Completed:

Client: **Red Bus Company Services**

Groundwater Sampling and Site Assessment Report Project:

Borehole Location: 682A Coleridge Rd, Bateau Bay NSW 2261 Recorded By: PS126618 Log Checked By:

Project Number:

Driller: Drill Model/Mounting: Comacchio-Matrix Surface RL:

Bor	ehc	le D	iameter: 100 mn	n			Drille	er Lic No: Co-ords	S :			
			Borehole Infor		_			Field Mater	ial D			
МЕТНОБ	SUPPORT	water ω	WELL CONSTRUCTION	RL(m) GPTH(m)	Field PID (ppm) 9	SAMPLE	GRAPHIC LOG ®	9 10 SOIL/ROCK MATERIAL FIELD DESCRIPTION	Field pH	MOISTURE 11	12 RELATIVE DENSITY //CONSISTENCY BLANDON SOLOS SOLOS H	13 STRUCTURE AND ADDITIONAL OBSERVATIONS
EX				-	0.1	J+B		FILL SAND; brown, rootlets, dry.				BH2_0.1-0.2
				0.30	0.1	J+B		SAND; brown and orange, moist, medium to coarse grained. FILL: Gravelly CLAY; grey mottles,				—BH2_0.3-0.4 QA03, QA03A
				_	0.1	J+B		medium plasticity, moist, green patches.				- −BH2_0.9-1.0
				1.0 -1 -								
				1.5								
				2.0 200-2-				NATURAL: Sandy CLAY; black, moist, becoming sandy with depths, medium plasticity.				
				2.5								
				3.0 -3 -								
				3.5								
				4.0 -4 -	0.1	J+B						- −BH2_4.0
	_			4.5 4.50 -			/. <u> /</u>	Target depth reached at 4.50 m				
				This borehol	e log sh	ould l	be read	d in conjunction with WSP's accompanying	stand	dard	notes.	

BOREHOLE NO.

BH03

SHEET 1 OF 1

10/5/21

10/5/21

JW

RL

Date Commenced:

Date Completed:

Recorded By:

Client: **Red Bus Company Services**

Project: **Groundwater Sampling and Site Assessment Report**

Borehole Location: 682A Coleridge Rd, Bateau Bay NSW 2261

PS126618 Project Number:

Log Checked By: Drill Model/Mounting: Comacchio-Matrix Driller: Surface RL:

-	2	3	Borehole Infor				7	8	Field Material Description 9 10 11 12 13
METHOD	SUPPORT	water 6	WELL CONSTRUCTION	RL(m)	DEPTH(m)	Field PID (ppm) 👨	SAMPLE	507	SOIL/ROCK MATERIAL FIELD DESCRIPTION THE DENSITY CONSISTENCY STRUCTURE AND ADDITIONAL OBSERVATION ADDITIONAL OBSERVATION SOLLS TO LS TO
iA .				0.5		0.1	J+B		NATURAL SAND; grey, medium to coarse grained, becoming orange with depths.
				1.0		0.1	J		Target depth reached at 1.00 m
					-				

BOREHOLE NO.

BH04

SHEET 1 OF 1

10/5/21

10/5/21

JW

RL

Date Commenced:

Date Completed:

Log Checked By:

Recorded By:

Client: **Red Bus Company Services**

Project: **Groundwater Sampling and Site Assessment Report**

682A Coleridge Rd, Bateau Bay NSW 2261 Borehole Location:

Project Number: PS126618

	del/N	Mounting: Comac		x		Driller			.: .:
3orehol	le Di	ameter: 100 mr				Driller	r Lic No: Co-ords		
2	3	Borehole Infor	mation 5	6	7	8	9 Field Mater	ial D	Description 11 12 13
METHOD SUPPORT	WATER	WELL CONSTRUCTION	RL(m)	Field PID (ppm)	SAMPLE	907	OIL/ROCK MATERIAL FIELD DESCRIPTION	Field pH	RELATIVE DENSITY (CONSISTENCY STRUCTURE AND
₩ KS HA			0.5 aso —	0.1 0.1	J+B		FILL Gravelly SAND; brown, fine to coarse grained, concrete cobbles. Becoming orange and brown, dry. Becoming white and brown, dry. Clayey SAND; brown and orange, trace gravels, less than 3mm, medium plasticity, dry. NATURAL SAND; orange, medium grained, moist. Target depth reached at 1.00 m	出 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	=====================================

BOREHOLE NO.

BH05

SHEET 1 OF 1

10/5/21

10/5/21

Date Commenced:

Date Completed:

Client: Red Bus Company Services

Project: Groundwater Sampling and Site Assessment Report

Borehole Location: 682A Coleridge Rd, Bateau Bay NSW 2261 Recorded By: JW Project Number: PS126618 Log Checked By: RL

Drill Model/Mounting: Comacchio-Matrix Driller: Surface RL:

Borehole Diameter: 100 mm Driller Lic No: Co-ords:

Borehole Information 2 3 4 ON THE WATER CONSTRUCTION HA	4		DEPTH(m)	Field PID (ppm) $^{\circ}$	7 WALE	8 BOJ	er Lic No: Co-ord Field Mate 9 10 SOIL/ROCK MATERIAL FIELD DESCRIPTION		11	12 RELATIVE DENSITY //CONSISTENCY	13 STRUCTURE AND ADDITIONAL OBSERVATIONS
A A TERM WATTER WATTER WATER CONSTRUCTION	4		5				9 10		11	12 RELATIVE DENSITY //CONSISTENCY	
SUPPC SUPPC WATER	ELL RUCTION	RL(m)	DEPTH(m)	ield PID (ppm)	MPLE	PHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	_	TURE	DENSITY /CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
HA		RL(m) DEPTH(m)		Field PID	SAMPLE	GRA		Field pH	MOIS	S S S S S S S S S S S S S S S S S S S	
		0.5	0.50	0.1	J+E	3	Gravelly SAND; grey, medium to coarse grained, becoming orange with depths. SAND; orange, medium to coarse grained, dry. Target depth reached at 1.00 m	Held	iOW IOW	S	BH05_0.2-0.3 QA02, QA02A
			-								

BOREHOLE NO.

BH06

SHEET 1 OF 1

10/5/21

10/5/21

JW

RL

Date Commenced:

Date Completed:

Log Checked By:

Recorded By:

Client: **Red Bus Company Services**

Groundwater Sampling and Site Assessment Report Project:

Borehole Location: 682A Coleridge Rd, Bateau Bay NSW 2261

PS126618 Project Number:

Drill Model/Mounting: Comacchio-Matrix Borehole Diameter: 100 mm							Drill Drill	er: Surface er Lic No: Co-ord:		:
			Borehole Info	rmation				Field Mater	rial [Description
:	2	3	4	5	6	7	8	9 10		11 12 13
METHOD	SUPPORT	WATER	WELL CONSTRUCTION	RL(m)	DEPTH(m) Field PID (ppm)	SAMPLE	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	Field pH	RELATIVE DENSITY CONSISTENCY WATER TO THE CONSTRUCTURE AND ADDITIONAL OBSERVATIONS WATER TO THE CONSTRUCTURE AND ADDITIONAL OBSERVATIONS WATER TO THE CONSTRUCTURE AND ADDITIONAL OBSERVATIONS WATER TO THE CONSTRUCTURE AND ADDITIONAL OBSERVATIONS
HA	-	_		_		+ "	$\times\!\!\times\!\!\times$	Gravelly SAND; dry.	ш	
				0.20 -	0.1	J+E		Gravelly SAND; grey, medium to coarse grained, becoming orange with depths. FILL SAND; orange, medium to coarse grained, dry. Target depth reached at 1.00 m		BH06_0.2-0.3

BOREHOLE NO.

SHEET 1 OF 1

10/5/21

10/5/21

JW

RL

Date Commenced:

Date Completed:

BH07

Red Bus Company Services Client:

Project: **Groundwater Sampling and Site Assessment Report**

Borehole Location: 682A Coleridge Rd, Bateau Bay NSW 2261 Recorded By: Log Checked By:

Project Number: PS126618

Drill Model/Mounting: Comacchio-Matrix

Driller: Surface RL:

Bor	eh	ole	e Di	ameter: 100 mn	n		Driller Lic No: Co-ords:						
				Borehole Infor					Field Mate)esc	cription	
	2	<u>.</u>	3	4	5	6	7	8	9 10		11	12	13
METHOD	SUPPORT		WATER	WELL CONSTRUCTION	RL(m) DEPTH(m)	Field PID (ppm)	SAMPLE	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	Field pH	MOISTURE	RELATIVE DENSITY /CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
HA					0.20 — -	. 0.1	J+B		Gravelly SAND; brown, less than 3mm, dry. Gravelly SAND; grey, medium to coarse grained, becoming orange with depths.				- ВН07_0.2-0.3
					0.5 0.50	0.1	J+B		SAND; orange, medium to coarse grained, moist.				- ВН07_0.5-0.6
					1.0 1.00-1-	0.1	J+B		Target depth reached at 1.00 m				- ВН07_0.9-1.0
					-								
					-	_			l in conjunction with WSP's accompanying				

Client:

BOREHOLE ENVIRONMENTAL LOG

BOREHOLE NO.

SHEET 1 OF 1 10/5/21

10/5/21

JW

RL

Date Commenced:

Date Completed:

Log Checked By:

Recorded By:

BH08

Red Bus Company Services

Project: Groundwater Sampling and Site Assessment Report

Borehole Location: 682A Coleridge Rd, Bateau Bay NSW 2261

Project Number: PS126618

Drill Model/Mounting: Comacchio-Matrix

Driller: Surface RL:

Bor	eho	le D	iameter: 100 mn	n		Driller Lic No: Co-ords:								
			Borehole Infor			_		Field Mater	rial [ription			
МЕТНОБ	SUPPORT	water ω	WELL CONSTRUCTION	RL(m) G DEPTH(m)	Field PID (ppm) 0	SAMPLE	GRAPHIC LOG ∞	9 10 SOIL/ROCK MATERIAL FIELD DESCRIPTION	Field pH	MOISTURE 11	12 RELATIVE DENSITY /CONSISTENCY BLAND Q SOLOND	13 STRUCTURE AND ADDITIONAL OBSERVATIONS		
EX					0.1	J+B		Clayey SAND; brown, less than 3mm, dry.				——ВН08_0.1-0.2		
				0.40 — -	. 0.1	J		NATURAL SAND; orange, fine to coarse grained.				−−ВН08_0.4-0.5		
				1.0 1.00-1-	0.1	J		Target depth reached at 1.00 m	-			——ВН08_0.9-1.0		
				-										
				This boreho	le log sh	ould I	oe read	in conjunction with WSP's accompanying	stan	dard	notes.			

BOREHOLE NO.

BH09

SHEET 1 OF 1

10/5/21

10/5/21

Date Commenced:

Date Completed:

Client: Red Bus Company Services

Project: Groundwater Sampling and Site Assessment Report

Borehole Location: 682A Coleridge Rd, Bateau Bay NSW 2261 Recorded By: JW Project Number: PS126618 Log Checked By: RL

Drill Model/Mounting: Comacchio-Matrix Driller: Surface RL:

Borehole Diameter: 100 mm Driller Lic No: Co-ords:

Borehole Diameter: 100 mm								Drille	er: Surface er Lic No: Co-ords	3 :		
			Borehole Infor	matio	n				Field Mater	ial D	escription	
МЕТНОD	SUPPORT	wATER	4 WELL CONSTRUCTION	RL(m)	DEPTH(m)	Field PID (ppm) 9	SAMPLE	GRAPHIC LOG ∞	9 10 SOIL/ROCK MATERIAL FIELD DESCRIPTION	Field pH	M S S S L S S	13 STRUCTURE AND ADDITIONAL OBSERVATIONS
EX	<u></u>				_	0.1	J+B		Clayey SAND; brown, less than 3mm, dry.			— ВН9_0.1-0.2
				0.5		0.1	J+B		CLAY; red, medium plasticity.	-		──BH9_0.4-0.5
				1.0	-1 -	0.1	J+B					──BH9_0.9-1.0
				1.5	_							
				2.0 2	2.00-2-				SAND; brown, medium to coarse grained, moist. Target depth reached at 2.00 m	-		

BOREHOLE NO.

BH10

SHEET 1 OF 2

10/5/21

10/5/21

JW

RL

Date Commenced:

Date Completed:

Log Checked By:

Recorded By:

Client: **Red Bus Company Services**

Project: **Groundwater Sampling and Site Assessment Report**

682A Coleridge Rd, Bateau Bay NSW 2261 Borehole Location:

Project Number: PS126618

			Mounting: Comac ameter: 100 mi		ix		Driller Driller	: Surface Lic No: Co-ords				
DOI	eno	ie D	Borehole Info				Dille	Field Materi		1000	rintion	
	2	3	4	5	6	7	8	9 10	ai D	11	12	13
МЕТНОБ	SUPPORT	WATER	WELL CONSTRUCTION	RL(m) DEPTH(m)	(mdo	SAMPLE	GRAPHIC LOG	DIL/ROCK MATERIAL FIELD DESCRIPTION	Field pH		RELATIVE DENSITY /CONSISTENCY BLAND ADD ADD ADD ADD ADD ADD ADD ADD ADD	
EX					0.1	J	/	Clayey SAND; dry, brown, fine grained sand, low plasticity clay, no odour.				— ВН10_0.1-0.2
				0.40 —	_ 0.1	J		CLAY; brown, medium plasticity, dry, no odour, no staining.				──BH10_0.4-0.5
					0.1	J						——ВН10_0.7-0.8
				0.86				Target depth reached at 0.86 m				

APPENDIX G CALIBRATION CERTIFICATES

airmet

Air-Met Scientific Pty Ltd 1300 137 067

Instrument YSI Quatro Pro Plus

Serial No. 20M101177

Item	Test	Pass	Comments
Battery	Charge Condition	✓	
	Fuses	✓	
	Capacity	✓	
Switch/keypad	Operation	✓	
Display	Intensity	✓	
	Operation	✓	
	(segments)		
Grill Filter	Condition	✓	
	Seal	✓	
PCB	Condition	✓	
Connectors	Condition	✓	
Sensor	1. pH	✓	
	2. mV	✓	
	3. EC	✓	
	4. D.O	✓	
	5. Temp	✓	
Alarms	Beeper		
	Settings		
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that $\overline{\text{the above instrument}}$ has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle	Instrument Reading
				Number	
1. pH 10.00		pH 10.00		3670064	pH 9.89
2. pH 7.00		pH 7.00		372012	pH 7.02
3. pH 4.00		pH 4.00		367234	pH 4.07
4. mV		231.8 mV		371922/364219	231.8mV
5. EC		2.76mS		369734	2.75mS
6. D.O		0.00ppm		10959	0.00ppm
7. Temp		21.4°C		MultiTherm	21.1.°C

Calibrated by: Gary Needs

Calibration date: 16/09/2021

Next calibration due: 17/10/2021

Oil / Water Interface Meter

Instrument Interface Meter (30M)

Serial No. 348870

ltem	Test	Pass	Comments
Battery	Compartment	✓	
-	Capacity	✓	
Probe	Cleaned/Decon.	✓	
	Operation	✓	
Connectors	Condition	✓	
		✓	
Tape Check	Cleaned	✓	
	Checked for cuts	✓	
Instrument Test	At surface level	✓	

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by	<i>/</i> :	Ky	li	е	Board	amt	ın

Calibration date: 17/09/2021

Next calibration due: 16/11/2021

PID Calibration Certificate

Instrument PhoCheck Tiger

Serial No. T-113989

Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass			Comments	s
Battery	Charge Condition	✓				
	Fuses	✓				
	Capacity	✓				
	Recharge OK?	✓				
Switch/keypad	Operation	✓				
Display	Intensity	✓				
	Operation	✓				
	(segments)					
Grill Filter	Condition	✓				
	Seal	✓				
Pump	Operation	✓				
	Filter	✓				
	Flow	✓				
	Valves, Diaphragm	✓				
PCB	Condition	✓				
Connectors	Condition	✓				
Sensor	PID	✓	10.6ev			
Alarms	Beeper	✓	Low	High	TWA	STEL
	Settings	✓	50ppm	100ppm	N/A	N/A
Software	Version	✓			•	<u> </u>
Data logger	Operation	✓				
Download	Operation	✓				
Other tests:						

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Calibration gas and	Certified	Gas bottle	Instrument Reading
		concentration		No	
PID Lamp		93ppm Isobutylene	NATA	SY361	92.4 ppm

Calibrated by: Kylie Rawlings

Calibration date: 17/09/2021

Next calibration due: 16/03/2022

APPENDIX H LABORATORY CERTIFICATES

ABN: 50 005 085 521 Melbourne

6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Perth

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Oct 12, 2021 8:01 AM

Oct 19, 2021

Richie Lamont

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

WSP Australia P/L Newcastle

Address:

PO Box 1162 Newcastle NSW 2300

Project Name: Project ID:

RED BUS SERVICES BATEAU BAY

PS126618

Order No.: 30072355 Report #: 831781

Phone: 02 4929 8300 02 4929 7299 Fax:

5 Day

Eurofins Anal	ytical Service	s Manager :	: Andrew	Blac

			mple Detail			HOLD	Metals M8	Metals M8 filtered	Volatile Organics	Eurofins Suite B1	BTEXN and Volatile TRH
	ourne Laborato			4							
	ney Laboratory					Х	Х	Х	Х	Х	X
	oane Laborator										
	ield Laboratory										
	n Laboratory - N		e # 2370								
	rnal Laboratory		.								_
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	MW4	Oct 08, 2021		Water	S21-Oc26683			Х	Х	Х	
2	MW6	Oct 07, 2021		Water	S21-Oc26686			Χ	Х	Χ	
3	MW9	Oct 07, 2021		Water	S21-Oc26687			Χ	Х	Χ	
4	MW10	Oct 07, 2021		Water	S21-Oc26688			Х	Х	Χ	
5	MW11	Oct 07, 2021		Water	S21-Oc26689			Х	Х	Χ	
6	MW12	Oct 07, 2021		Water	S21-Oc26690			Χ	Х	Χ	
7	MW13	Oct 07, 2021		Water	S21-Oc26691			Χ	Х	Χ	
8	MW14	Oct 07, 2021		Water	S21-Oc26692			Χ	Х	Χ	
9	MW15	Oct 07, 2021		Water	S21-Oc26693			Χ	Χ	Χ	

email: EnviroSales@eurofins.com

Environment Testing

Melbourne

6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Eurofins Environment Testing Australia Pty Ltd

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Contact Name:

Priority:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

ABN: 91 05 0159 898

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 19, 2021

Richie Lamont

Oct 12, 2021 8:01 AM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

WSP Australia P/L Newcastle

Address:

PO Box 1162 Newcastle NSW 2300

Project Name: Project ID:

RED BUS SERVICES BATEAU BAY

PS126618

Order No.: 30072355 Report #: 831781

Phone: 02 4929 8300 02 4929 7299 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

		Sa	mple Detail			HOLD	Metals M8	Metals M8 filtered	Volatile Organics	Eurofins Suite B1	BTEXN and Volatile TRH	
Mell	oourne Laborat	ory - NATA # 12	61 Site # 125	4								
Syd	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х	
Bris	bane Laborato	ry - NATA # 126	1 Site # 2079	4								
May	field Laborator	y - NATA # 1261	Site # 25079)								
Pert	h Laboratory -	NATA # 2377 Si	te # 2370									
Exte	rnal Laborator	у			<u> </u>							
10	MW16	Oct 07, 2021		Water	S21-Oc26694			Х	Х	Х		
11	MW17	Oct 07, 2021		Water	S21-Oc26695			Х	Х	Х		
12	MW19	Oct 07, 2021		Water	S21-Oc26696			Х	Х	Х		
13	MW20	Oct 08, 2021		Water	S21-Oc26697			Х	Х	Х		
14	MW21	Oct 08, 2021		Water	S21-Oc26698			Х	Х	Х		
15	MW23	Oct 08, 2021		Water	S21-Oc26699			Х	Х	Х		
16	MW26	Oct 08, 2021		Water	S21-Oc26700			Х	Х	Х		l
17	MW30	Oct 08, 2021		Water	S21-Oc26701			Х	Х	Х		
18	MW32	Oct 08, 2021		Water	S21-Oc26702			Х	Х	Х		
19	MW33	Oct 08, 2021		Water	S21-Oc26703			Х	Х	Х		
20	MW34	Oct 08, 2021		Water	S21-Oc26704			Χ	Х	Х		

ABN: 50 005 085 521 Melbourne

6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

Fax:

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

NZBN: 9429046024954

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

WSP Australia P/L Newcastle

Company Name: Address:

PO Box 1162 Newcastle NSW 2300

Project Name:

RED BUS SERVICES BATEAU BAY

Project ID: PS126618

Order No.: 30072355 Received: Oct 12, 2021 8:01 AM Report #:

831781 Due: Oct 19, 2021 Phone: 02 4929 8300 **Priority:** 5 Day

02 4929 7299 **Contact Name:** Richie Lamont

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			HOLD	Metals M8	Metals M8 filtered	Volatile Organics	Eurofins Suite B1	BTEXN and Volatile TRH
Melb	ourne Laborat	ory - NATA # 12	61 Site # 125	4							
Sydr	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х
Bris	oane Laborator	y - NATA # 126	Site # 2079	4							
May	ield Laboratory	y - NATA # 1261	Site # 25079	1							
Perti	n Laboratory - I	NATA # 2377 Sit	te # 2370								
Exte	rnal Laboratory	/		1							
21	RB02	Oct 08, 2021		Water	S21-Oc26705			Х			
22	TB01	Oct 08, 2021		Water	S21-Oc26706						Х
23	QA01	Oct 07, 2021		Water	S21-Oc26707		Х		Х	Х	
24	QA02	Oct 06, 2021		Water	S21-Oc26708	Х					
25	QA02a	Oct 06, 2021		Water	S21-Oc26709	Х					
Test	Counts					2	1	21	21	21	1

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000
Lane Cove We NATA # 1261 Site # 1254

Unit F3 Building F NATA # 1261 Site # 18217

Brisbane NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 www.eurofins.com.au

ABN: 91 05 0159 898

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 EnviroSales@eurofins.com

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

WSP Australia P/L Newcastle

Contact name:

Richie Lamont

Project name:

RED BUS SERVICES BATEAU BAY

Project ID: Turnaround time: PS126618 5 Day

Date/Time received

Oct 12, 2021 8:01 AM

Eurofins reference

831781

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt:

13 degrees Celsius.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant

holding times.

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

QA1a packed for ALS, Please indicate number of containers sent in containers column of the COC. Heavy Metals analysis is changed to Heavy Metals filtered analysis as filtered bottle was provided.

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone: (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com

Results will be delivered electronically via email to Richie Lamont - richie.lamont@wsp.com.

Note: A copy of these results will also be delivered to the general WSP Australia P/L Newcastle email address.

WSP Australia P/L Newcastle PO Box 1162 Newcastle NSW 2300

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Richie Lamont

Report 831781-W

Project name RED BUS SERVICES BATEAU BAY

Project ID PS126618
Received Date Oct 12, 2021

Client Sample ID			MW4	MW6	MW9	MW10
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-Oc26683	S21-Oc26686	S21-Oc26687	S21-Oc26688
Date Sampled			Oct 08, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	•	•				
TRH C6-C9	0.02	mg/L	0.03	0.04	0.04	0.03
TRH C10-C14	0.05	mg/L	2.5	7.3	0.49	2.1
TRH C15-C28	0.1	mg/L	4.9	26	1.1	9.7
TRH C29-C36	0.1	mg/L	0.4	0.4	< 0.1	0.1
TRH C10-C36 (Total)	0.1	mg/L	7.8	33.7	1.59	11.9
Naphthalene ^{N02}	0.01	mg/L	0.04	0.01	0.02	< 0.01
TRH C6-C10	0.02	mg/L	0.18	0.12	0.20	0.07
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	0.17	0.12	0.19	0.07
TRH >C10-C16	0.05	mg/L	3.8	14	0.76	4.6
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	3.76	13.99	0.74	4.6
TRH >C16-C34	0.1	mg/L	3.7	20	0.8	7.5
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	7.5	34	1.56	12.1
втех						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	0.004	0.003	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	0.003	< 0.002	0.004	< 0.002
o-Xylene	0.001	mg/L	0.004	0.001	0.007	< 0.001
Xylenes - Total*	0.003	mg/L	0.008	< 0.003	0.011	< 0.003
4-Bromofluorobenzene (surr.)	1	%	100	104	104	105
Volatile Organics						
1.1-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dibromoethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2.4-Trimethylbenzene	0.001	mg/L	0.022	0.021	0.041	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Report Number: 831781-W

Client Sample ID			MW4	MW6	MW9	MW10
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-Oc26683	S21-Oc26686	S21-Oc26687	S21-Oc26688
Date Sampled			Oct 08, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Volatile Organics	<u>'</u>					
1.3-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3.5-Trimethylbenzene	0.001	mg/L	0.015	0.015	0.023	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Butanone (MEK)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
2-Propanone (Acetone)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
4-Chlorotoluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
4-Methyl-2-pentanone (MIBK)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Allyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromodichloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromoform	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromomethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Carbon disulfide	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Carbon Tetrachloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chloroethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Chloroform	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Chloromethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dichlorodifluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	0.004	0.003	< 0.001	< 0.001
Iodomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	0.003	0.002	0.002	< 0.001
m&p-Xylenes	0.002	mg/L	0.003	< 0.002	0.004	< 0.002
Methylene Chloride	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
o-Xylene	0.001	mg/L	0.004	0.001	0.007	< 0.001
Styrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichlorofluoromethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Vinyl chloride	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Xylenes - Total*	0.003	mg/L	0.008	< 0.003	0.011	< 0.003
Total MAH*	0.003	mg/L	0.014	0.006	0.013	< 0.003
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
4-Bromofluorobenzene (surr.)	1	%	100	104	104	105
Toluene-d8 (surr.)	1	%	109	112	111	115

Report Number: 831781-W

Client Sample ID Sample Matrix			MW4 Water	MW6 Water	MW9 Water	MW10 Water
Eurofins Sample No.			S21-Oc26683	S21-Oc26686	S21-Oc26687	S21-Oc26688
Date Sampled			Oct 08, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Heavy Metals		·				
Arsenic (filtered)	0.001	mg/L	0.006	0.021	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	0.002	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.002
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Zinc (filtered)	0.005	mg/L	< 0.005	< 0.005	0.022	0.005

Client Sample ID			MW11	MW12	MW13	MW14
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-Oc26689	S21-Oc26690	S21-Oc26691	S21-Oc26692
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	1.5	< 0.05	0.60	< 0.05
TRH C15-C28	0.1	mg/L	7.4	< 0.1	0.6	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	8.9	< 0.1	1.2	< 0.1
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	0.04	0.03	0.08	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	0.04	0.03	0.08	< 0.02
TRH >C10-C16	0.05	mg/L	4.2	< 0.05	1.1	< 0.05
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	4.2	< 0.05	1.1	< 0.05
TRH >C16-C34	0.1	mg/L	5.0	< 0.1	0.2	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	9.2	< 0.1	1.3	< 0.1
BTEX						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	0.004	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	0.005	< 0.003
4-Bromofluorobenzene (surr.)	1	%	102	101	97	97
Volatile Organics						
1.1-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dibromoethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Client Sample ID			MW11	MW12	MW13	MW14
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-Oc26689	S21-Oc26690	S21-Oc26691	S21-Oc26692
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Volatile Organics	·					
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	0.004	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3.5-Trimethylbenzene	0.001	mg/L	0.002	0.001	0.010	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Butanone (MEK)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
2-Propanone (Acetone)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
4-Chlorotoluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
4-Methyl-2-pentanone (MIBK)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Allyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromodichloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromoform	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromomethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Carbon disulfide	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Carbon Tetrachloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chloroethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Chloroform	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Chloromethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dichlorodifluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Iodomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	< 0.001	0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Methylene Chloride	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
o-Xylene	0.001	mg/L	< 0.001	< 0.001	0.004	< 0.001
Styrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichlorofluoromethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Vinyl chloride	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	0.005	< 0.003
Total MAH*	0.003	mg/L	< 0.003	< 0.003	0.005	< 0.003
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
4-Bromofluorobenzene (surr.)	1	%	102	101	97	97
Toluene-d8 (surr.)	1	%	109	109	106	106

Report Number: 831781-W

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			MW11 Water S21-Oc26689 Oct 07, 2021	MW12 Water S21-Oc26690 Oct 07, 2021	MW13 Water S21-Oc26691 Oct 07, 2021	MW14 Water S21-Oc26692 Oct 07, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	0.002	< 0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.002	< 0.001	< 0.001	< 0.001
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	0.0003
Nickel (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Zinc (filtered)	0.005	mg/L	0.007	< 0.005	< 0.005	0.008

Client Sample ID			MW15	MW16	MW17	MW19
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-Oc26693	S21-Oc26694	S21-Oc26695	S21-Oc26696
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	0.19
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1	0.19
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	0.08
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	< 0.05	< 0.05	< 0.05	0.08
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
BTEX						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	97	95	98	96
Volatile Organics						
1.1-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dibromoethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Report Number: 831781-W

Client Sample ID			MW15	MW16	MW17	MW19
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-Oc26693	S21-Oc26694	S21-Oc26695	S21-Oc26696
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Volatile Organics	•					
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Butanone (MEK)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
2-Propanone (Acetone)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
4-Chlorotoluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
4-Methyl-2-pentanone (MIBK)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Allyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromodichloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromoform	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromomethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Carbon disulfide	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Carbon Tetrachloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chloroethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Chloroform	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Chloromethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dichlorodifluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Iodomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Methylene Chloride	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Styrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichlorofluoromethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Vinyl chloride	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
Total MAH*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
4-Bromofluorobenzene (surr.)	1	%	97	95	98	96
Toluene-d8 (surr.)	1	%	106	104	110	105

Client Sample ID Sample Matrix			MW15 Water	MW16 Water	MW17 Water	MW19 Water
Eurofins Sample No.			S21-Oc26693	S21-Oc26694	S21-Oc26695	S21-Oc26696
Date Sampled			Oct 07, 2021	Oct 07, 2021	Oct 07, 2021	Oct 07, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	0.001	< 0.001	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.002	< 0.001	0.002	0.001
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	0.0002	0.0004
Nickel (filtered)	0.001	mg/L	< 0.001	0.002	< 0.001	< 0.001
Zinc (filtered)	0.005	mg/L	< 0.005	0.005	0.024	0.006

Client Sample ID			MW20	MW21	MW23	MW26
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-Oc26697	S21-Oc26698	S21-Oc26699	S21-Oc26700
Date Sampled			Oct 08, 2021	Oct 08, 2021	Oct 08, 2021	Oct 08, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	·					
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	0.03	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	0.14	0.72	< 0.05
TRH C15-C28	0.1	mg/L	0.2	< 0.1	1.2	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	0.2	0.14	1.92	< 0.1
Naphthalene ^{N02}	0.01	mg/L	< 0.01	0.03	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	0.11	0.11	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	0.10	0.11	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	0.22	1.6	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	0.19	1.6	< 0.05
TRH >C16-C34	0.1	mg/L	0.1	< 0.1	0.6	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	0.1	0.22	2.2	< 0.1
BTEX						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	0.002	0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	0.012	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	0.012	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	96	96	99	98
Volatile Organics						
1.1-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dibromoethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Report Number: 831781-W

Client Sample ID			MW20	MW21	MW23	MW26
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-Oc26697	S21-Oc26698	S21-Oc26699	S21-Oc26700
Date Sampled			Oct 08, 2021	Oct 08, 2021	Oct 08, 2021	Oct 08, 2021
Test/Reference	LOR	Unit				
Volatile Organics						
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	0.007	< 0.001	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001	0.012	0.007	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Butanone (MEK)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
2-Propanone (Acetone)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
4-Chlorotoluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
4-Methyl-2-pentanone (MIBK)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Allyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromodichloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromoform	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromomethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Carbon disulfide	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Carbon Tetrachloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chloroethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Chloroform	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Chloromethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dichlorodifluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	0.002	0.001	< 0.001
Iodomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	0.001	0.002	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Methylene Chloride	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
o-Xylene	0.001	mg/L	< 0.001	0.012	< 0.001	< 0.001
Styrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichlorofluoromethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Vinyl chloride	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Xylenes - Total*	0.003	mg/L	< 0.003	0.012	< 0.003	< 0.003
Total MAH*	0.003	mg/L	< 0.003	0.015	0.003	< 0.003
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
4-Bromofluorobenzene (surr.)	1	%	96	96	99	98
Toluene-d8 (surr.)	1	%	107	109	109	108

Client Sample ID Sample Matrix			MW20 Water	MW21 Water	MW23 Water	MW26 Water
Eurofins Sample No.			S21-Oc26697	S21-Oc26698	S21-Oc26699	S21-Oc26700
Date Sampled			Oct 08, 2021	Oct 08, 2021	Oct 08, 2021	Oct 08, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	0.021	0.005	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	0.002	< 0.001	< 0.001	0.004
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Zinc (filtered)	0.005	mg/L	< 0.005	0.017	< 0.005	0.009

Client Sample ID			MW30	MW32	MW33	MW34
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-Oc26701	S21-Oc26702	S21-Oc26703	S21-Oc26704
Date Sampled			Oct 08, 2021	Oct 08, 2021	Oct 08, 2021	Oct 08, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	0.02	mg/L	< 0.02	0.03	0.09	0.03
TRH C10-C14	0.05	mg/L	< 0.05	12	< 0.05	2.5
TRH C15-C28	0.1	mg/L	< 0.1	53	< 0.1	7.3
TRH C29-C36	0.1	mg/L	< 0.1	0.5	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	65.5	< 0.1	9.8
Naphthalene ^{N02}	0.01	mg/L	< 0.01	0.02	0.07	0.04
TRH C6-C10	0.02	mg/L	< 0.02	0.10	0.28	0.09
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	0.09	0.24	0.09
TRH >C10-C16	0.05	mg/L	< 0.05	23	< 0.05	5.2
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	22.98	< 0.05	5.16
TRH >C16-C34	0.1	mg/L	< 0.1	40	< 0.1	4.8
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	63	< 0.1	10
BTEX						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	0.004	0.011	0.002
m&p-Xylenes	0.002	mg/L	< 0.002	0.003	0.005	< 0.002
o-Xylene	0.001	mg/L	< 0.001	0.002	0.021	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	0.004	0.026	< 0.003
4-Bromofluorobenzene (surr.)	1	%	86	110	100	91
Volatile Organics						
1.1-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dibromoethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloroethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Client Sample ID			MW30	MW32	MW33	MW34
Sample Matrix			Water	Water	Water	Water
Eurofins Sample No.			S21-Oc26701	S21-Oc26702	S21-Oc26703	S21-Oc26704
Date Sampled			Oct 08, 2021	Oct 08, 2021	Oct 08, 2021	Oct 08, 2021
Test/Reference	LOR	Unit				
Volatile Organics	•					
1.2.4-Trimethylbenzene	0.001	mg/L	< 0.001	0.016	0.064	0.022
1.3-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3-Dichloropropane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
1.3.5-Trimethylbenzene	0.001	mg/L	< 0.001	0.010	0.027	0.009
1.4-Dichlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Butanone (MEK)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
2-Propanone (Acetone)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
4-Chlorotoluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
4-Methyl-2-pentanone (MIBK)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Allyl chloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromodichloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromoform	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Bromomethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Carbon disulfide	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Carbon Tetrachloride	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chlorobenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chloroethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Chloroform	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Chloromethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
cis-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromochloromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibromomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dichlorodifluoromethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	0.004	0.011	0.002
Iodomethane	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	< 0.001	0.002	0.004	0.003
m&p-Xylenes	0.002	mg/L	< 0.002	0.003	0.005	< 0.002
Methylene Chloride	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
o-Xylene	0.001	mg/L	< 0.001	0.002	0.021	< 0.001
Styrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Tetrachloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
trans-1.3-Dichloropropene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichloroethene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Trichlorofluoromethane	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Vinyl chloride	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Xylenes - Total*	0.003	mg/L	< 0.003	0.004	0.026	< 0.003
Total MAH*	0.003	mg/L	< 0.003	0.011	0.041	0.005
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
4-Bromofluorobenzene (surr.)	1	%	86	110	100	91
Toluene-d8 (surr.)	1	%	105	109	102	107

Client Sample ID Sample Matrix			MW30 Water	MW32 Water	MW33 Water	MW34 Water
Eurofins Sample No.			S21-Oc26701	S21-Oc26702	S21-Oc26703	S21-Oc26704
Date Sampled			Oct 08, 2021	Oct 08, 2021	Oct 08, 2021	Oct 08, 2021
Test/Reference	LOR	Unit				
Heavy Metals						
Arsenic (filtered)	0.001	mg/L	< 0.001	0.008	0.026	0.006
Cadmium (filtered)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Lead (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Mercury (filtered)	0.0001	mg/L	0.0008	< 0.0001	< 0.0001	< 0.0001
Nickel (filtered)	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Zinc (filtered)	0.005	mg/L	< 0.005	0.017	< 0.005	0.012

Client Sample ID			RB02	TB01	QA01
Sample Matrix			Water	Water	Water
Eurofins Sample No.			S21-Oc26705	S21-Oc26706	S21-Oc26707
Date Sampled			Oct 08, 2021	Oct 08, 2021	Oct 07, 2021
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons					
TRH C6-C9	0.02	mg/L	-	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	-	-	< 0.05
TRH C15-C28	0.1	mg/L	-	-	< 0.1
TRH C29-C36	0.1	mg/L	-	-	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	-	-	< 0.1
Naphthalene ^{N02}	0.01	mg/L	-	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	-	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	-	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	-	-	< 0.05
TRH >C10-C16 less Naphthalene (F2)N01	0.05	mg/L	-	-	< 0.05
TRH >C16-C34	0.1	mg/L	-	-	< 0.1
TRH >C34-C40	0.1	mg/L	-	-	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	-	-	< 0.1
ВТЕХ					
Benzene	0.001	mg/L	-	< 0.001	< 0.001
Toluene	0.001	mg/L	-	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	-	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	-	< 0.002	< 0.002
o-Xylene	0.001	mg/L	-	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	-	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	-	98	108
Volatile Organics					
1.1-Dichloroethane	0.001	mg/L	-	=	< 0.001
1.1-Dichloroethene	0.001	mg/L	-	-	< 0.001
1.1.1-Trichloroethane	0.001	mg/L	-	-	< 0.001
1.1.1.2-Tetrachloroethane	0.001	mg/L	-	-	< 0.001
1.1.2-Trichloroethane	0.001	mg/L	-	-	< 0.001
1.1.2.2-Tetrachloroethane	0.001	mg/L	-	-	< 0.001
1.2-Dibromoethane	0.001	mg/L	-	-	< 0.001
1.2-Dichlorobenzene	0.001	mg/L	-	-	< 0.001
1.2-Dichloroethane	0.001	mg/L	-	-	< 0.001
1.2-Dichloropropane	0.001	mg/L	-	-	< 0.001
1.2.3-Trichloropropane	0.001	mg/L	-	-	< 0.001

Client Sample ID			RB02	TB01	QA01
Sample Matrix			Water	Water	Water
Eurofins Sample No.			S21-Oc26705	S21-Oc26706	S21-Oc26707
Date Sampled			Oct 08, 2021	Oct 08, 2021	Oct 07, 2021
Test/Reference	LOR	Unit			
Volatile Organics	'				
1.2.4-Trimethylbenzene	0.001	mg/L	_	_	< 0.001
1.3-Dichlorobenzene	0.001	mg/L	_	_	< 0.001
1.3-Dichloropropane	0.001	mg/L	_	_	< 0.001
1.3.5-Trimethylbenzene	0.001	mg/L	_	_	< 0.001
1.4-Dichlorobenzene	0.001	mg/L	_	_	< 0.001
2-Butanone (MEK)	0.005	mg/L	_	_	< 0.005
2-Propanone (Acetone)	0.005	mg/L	_	_	< 0.005
4-Chlorotoluene	0.003	mg/L	_	_	< 0.003
4-Methyl-2-pentanone (MIBK)	0.005	mg/L	_	_	< 0.005
Allyl chloride	0.003	mg/L	_	_	< 0.003
Benzene	0.001	mg/L		-	< 0.001
Bromobenzene	0.001	mg/L	_	-	< 0.001
Bromochloromethane	0.001	mg/L	_		< 0.001
Bromodichloromethane	0.001	mg/L	_	-	< 0.001
Bromoform	0.001			-	< 0.001
Bromomethane	0.001	mg/L	-	-	< 0.001
Carbon disulfide		mg/L	-		
Carbon Tetrachloride	0.001	mg/L	-	-	< 0.001
	0.001	mg/L	-	-	< 0.001
Chloropenzene	0.001	mg/L	-	-	< 0.001
Chloroethane	0.005	mg/L	-	-	< 0.005
Chloroform	0.005	mg/L	-	-	< 0.005
Chloromethane	0.005	mg/L	-	-	< 0.005
cis-1.2-Dichloroethene	0.001	mg/L	-	-	< 0.001
cis-1.3-Dichloropropene	0.001	mg/L	-	-	< 0.001
Dibromochloromethane	0.001	mg/L	-	-	< 0.001
Dibromomethane	0.001	mg/L	-	-	< 0.001
Dichlorodifluoromethane	0.001	mg/L	-	-	< 0.001
Ethylbenzene	0.001	mg/L	-	-	< 0.001
lodomethane	0.001	mg/L	-	-	< 0.001
Isopropyl benzene (Cumene)	0.001	mg/L	-	-	< 0.001
m&p-Xylenes	0.002	mg/L	-	-	< 0.002
Methylene Chloride	0.005	mg/L	-	-	< 0.005
o-Xylene	0.001	mg/L	-	-	< 0.001
Styrene	0.001	mg/L	-	-	< 0.001
Tetrachloroethene	0.001	mg/L	-	-	< 0.001
Toluene	0.001	mg/L	-	-	< 0.001
trans-1.2-Dichloroethene	0.001	mg/L	-	=	< 0.001
rans-1.3-Dichloropropene	0.001	mg/L	-	-	< 0.001
Trichloroethene	0.001	mg/L	-	-	< 0.001
Trichlorofluoromethane	0.005	mg/L	-	-	< 0.005
Vinyl chloride	0.005	mg/L	-	-	< 0.005
Xylenes - Total*	0.003	mg/L	-	-	< 0.003
Total MAH*	0.003	mg/L	-	-	< 0.003
Vic EPA IWRG 621 CHC (Total)*	0.005	mg/L	-	-	< 0.005
Vic EPA IWRG 621 Other CHC (Total)*	0.005	mg/L	-	-	< 0.005
4-Bromofluorobenzene (surr.)	1	%	-	-	108
Toluene-d8 (surr.)	1	%	-	-	109

Client Sample ID Sample Matrix			RB02 Water	TB01 Water	QA01 Water
Eurofins Sample No.			S21-Oc26705	S21-Oc26706	S21-Oc26707
Date Sampled			Oct 08, 2021	Oct 08, 2021	Oct 07, 2021
Test/Reference	LOR	Unit			
Heavy Metals					
Arsenic (filtered)	0.001	mg/L	< 0.001	-	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002	-	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001	-	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001	-	0.001
Lead (filtered)	0.001	mg/L	< 0.001	-	0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001	-	0.0004
Nickel (filtered)	0.001	mg/L	< 0.001	-	< 0.001
Zinc (filtered)	0.005	mg/L	< 0.005	-	0.006

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Oct 13, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 13, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons	Sydney	Oct 13, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Oct 13, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Eurofins Suite B1			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 13, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Volatile Organics	Sydney	Oct 15, 2021	7 Days
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Metals M8 filtered	Sydney	Oct 19, 2021	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Perth

Received:

Priority:

Contact Name:

Due:

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

WSP Australia P/L Newcastle

Address:

web: www.eurofins.com.au

PO Box 1162 Newcastle NSW 2300

Project Name: Project ID:

RED BUS SERVICES BATEAU BAY

PS126618

Order No.: 30072355 Report #: 831781

Phone: 02 4929 8300 02 4929 7299 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

NZBN: 9429046024954

Oct 12, 2021 8:01 AM

Oct 19, 2021

Richie Lamont

		Sa	mple Detail			HOLD	Metals M8	Metals M8 filtered	Volatile Organics	Eurofins Suite B1	BTEXN and Volatile TRH
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4							
Sydr	ney Laboratory	- NATA # 1261 :	Site # 18217			Х	Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA # 1261	Site # 20794	4							
May	field Laboratory	/ - NATA # 1261	Site # 25079	l .							
Pert	h Laboratory - N	NATA # 2377 Sit	e # 2370								
Exte	rnal Laboratory	1		1							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	MW4	Oct 08, 2021		Water	S21-Oc26683			Х	Х	Χ	
2	MW6	Oct 07, 2021		Water	S21-Oc26686			Х	Х	Х	
3	MW9	Oct 07, 2021		Water	S21-Oc26687			Х	Х	Х	
4	MW10	Oct 07, 2021		Water	S21-Oc26688			Х	Х	Х	
5	MW11	Oct 07, 2021		Water	S21-Oc26689			Х	Х	Х	
6	MW12	Oct 07, 2021		Water	S21-Oc26690			Х	Х	Х	
7	MW13	Oct 07, 2021		Water	S21-Oc26691			Х	Х	Х	
8	MW14	Oct 07, 2021		Water	S21-Oc26692			Х	Х	Χ	
9	MW15	Oct 07, 2021		Water	S21-Oc26693			Х	Х	Х	

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

NATA # 2377 Site # 2370

Perth

Auckland 35 O'Rorke Road Phone: +61 8 6253 4444

NZBN: 9429046024954

Oct 12, 2021 8:01 AM

Oct 19, 2021

Richie Lamont

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

WSP Australia P/L Newcastle

Address:

PO Box 1162 Newcastle NSW 2300

Project Name:

RED BUS SERVICES BATEAU BAY

Project ID: PS126618 Order No.: 30072355 Report #: 831781

Phone: 02 4929 8300 02 4929 7299 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

IANZ # 1327

			mple Detail			HOLD	Metals M8	Metals M8 filtered	Volatile Organics	Eurofins Suite B1	BTEXN and Volatile TRH
		ory - NATA # 12		4							
		- NATA # 1261		_		Х	Х	Х	Х	Х	Х
		ry - NATA # 126									
_		y - NATA # 1261									
	rnal Laboratory -	NATA # 2377 Si	te # 23/0								
10	MW16	Oct 07, 2021		Water	S21-Oc26694			Х	Х	X	
11	MW17	Oct 07, 2021		Water	S21-Oc26695			X	X	X	
12	MW19	Oct 07, 2021		Water	S21-Oc26696			X	X	X	
13	MW20	Oct 08, 2021		Water	S21-Oc26697			X	X	X	
14	MW21	Oct 08, 2021		Water	S21-Oc26698			Х	Х	Х	
15	MW23	Oct 08, 2021		Water	S21-Oc26699			Х	Х	Х	
16	MW26	Oct 08, 2021		Water	S21-Oc26700			Х	Х	Х	
17	MW30	Oct 08, 2021		Water	S21-Oc26701			Х	Х	Х	
18	MW32	Oct 08, 2021		Water	S21-Oc26702			Х	Х	Х	
19	MW33	Oct 08, 2021		Water	S21-Oc26703			Х	Х	Х	
20	MW34	Oct 08, 2021		Water	S21-Oc26704			Х	Х	Х	

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

Received:

Priority:

Contact Name:

Due:

Auckland 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

WSP Australia P/L Newcastle

Address:

web: www.eurofins.com.au

PO Box 1162 Newcastle NSW 2300

Project Name:

RED BUS SERVICES BATEAU BAY

Project ID: PS126618 Order No.: 30072355 Report #: 831781

Phone: 02 4929 8300 02 4929 7299 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

Oct 12, 2021 8:01 AM

Oct 19, 2021

Richie Lamont

Metals M8 filtered Sample Detail	Volatile Organics	Eurofins Suite B1	BTEXN and Volatile TRH
Melbourne Laboratory - NATA # 1261 Site # 1254			
Sydney Laboratory - NATA # 1261 Site # 18217 X X	Х	Х	Х
Brisbane Laboratory - NATA # 1261 Site # 20794			
Mayfield Laboratory - NATA # 1261 Site # 25079			
Perth Laboratory - NATA # 2377 Site # 2370			
External Laboratory			
21 RB02 Oct 08, 2021 Water S21-Oc26705 X			
22 TB01 Oct 08, 2021 Water S21-Oc26706			Х
23 QA01 Oct 07, 2021 Water S21-Oc26707 X	Х	Х	
24 QA02 Oct 06, 2021 Water S21-Oc26708 X			
25 QA02a Oct 06, 2021 Water S21-Oc26709 X			
Test Counts 2 1 21	21	21	1

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs...

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Eurofins Environment Testing Unit F3, Building F, 16 Mars Road, Lane Cove West, NSW, Australia, 2066 Page 18 of 24

ABN: 50 005 085 521 Telephone: +61 2 9900 8400 Report Number: 831781-W

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank	,g, <u> </u>			1 5.55	
Volatile Organics					
1.1-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.1-Dichloroethene	mg/L	< 0.001	0.001	Pass	
1.1.1-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.1.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2-Trichloroethane	mg/L	< 0.001	0.001	Pass	
1.1.2.2-Tetrachloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dibromoethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.2-Dichloroethane	mg/L	< 0.001	0.001	Pass	
1.2-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.3-Trichloropropane	mg/L	< 0.001	0.001	Pass	
1.2.4-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichlorobenzene	mg/L	< 0.001	0.001	Pass	
1.3-Dichloropropane	mg/L	< 0.001	0.001	Pass	
1.3.5-Trimethylbenzene	mg/L	< 0.001	0.001	Pass	
1.4-Dichlorobenzene		< 0.001	0.001	Pass	
2-Butanone (MEK)	mg/L	< 0.005	0.001	Pass	
2-Propanone (Acetone)	mg/L	< 0.005	0.005	Pass	
• • • • • • • • • • • • • • • • • • • •	mg/L				
4-Chlorotoluene	mg/L	< 0.001	0.001	Pass	
4-Methyl-2-pentanone (MIBK)	mg/L	< 0.005	0.005	Pass	
Allyl chloride	mg/L	< 0.001	0.001	Pass	
Benzene	mg/L	< 0.001	0.001	Pass	
Bromobenzene	mg/L	< 0.001	0.001	Pass	
Bromochloromethane	mg/L	< 0.001	0.001	Pass	
Bromodichloromethane	mg/L	< 0.001	0.001	Pass	
Bromoform	mg/L	< 0.001	0.001	Pass	-
Bromomethane	mg/L	< 0.005	0.005	Pass	-
Carbon disulfide	mg/L	< 0.001	0.001	Pass	-
Carbon Tetrachloride	mg/L	< 0.001	0.001	Pass	
Chlorobenzene	mg/L	< 0.001	0.001	Pass	
Chloroethane	mg/L	< 0.005	0.005	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Chloroform	mg/L	< 0.005	0.005	Pass	
Chloromethane	mg/L	< 0.005	0.005	Pass	
cis-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
cis-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Dibromochloromethane	mg/L	< 0.001	0.001	Pass	
Dibromomethane	mg/L	< 0.001	0.001	Pass	
Dichlorodifluoromethane	mg/L	< 0.001	0.001	Pass	
lodomethane	mg/L	< 0.001	0.001	Pass	
Isopropyl benzene (Cumene)	mg/L	< 0.001	0.001	Pass	
Methylene Chloride	mg/L	< 0.005	0.005	Pass	
Styrene	mg/L	< 0.001	0.001	Pass	
Tetrachloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.2-Dichloroethene	mg/L	< 0.001	0.001	Pass	
trans-1.3-Dichloropropene	mg/L	< 0.001	0.001	Pass	
Trichloroethene	mg/L	< 0.001	0.001	Pass	
Trichlorofluoromethane	mg/L	< 0.005	0.005	Pass	
Vinyl chloride	mg/L	< 0.005	0.005	Pass	
Method Blank	I mg/L	, , 0.000	1 0.000	1 433	
Heavy Metals					
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0001	Pass	+
Chromium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
		< 0.001	0.001	Pass	
Lead (filtered)	mg/L				
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered) LCS - % Recovery	mg/L	< 0.005	0.005	Pass	
		I	T		
Total Recoverable Hydrocarbons	0/	00	70.400	D	
TRH C6-C9	%	90	70-130	Pass	-
TRH C10-C14	%	109	70-130	Pass	
Naphthalene	%	94	70-130	Pass	
TRH C6-C10	%	90	70-130	Pass	
TRH >C10-C16	%	110	70-130	Pass	
LCS - % Recovery		1	1		
BTEX					-
Benzene	%	76	70-130	Pass	
Toluene	%	96	70-130	Pass	-
Ethylbenzene	%	97	70-130	Pass	
m&p-Xylenes	%	96	70-130	Pass	
o-Xylene	%	98	70-130	Pass	
Xylenes - Total*	%	97	70-130	Pass	
LCS - % Recovery		1 1	T 1		
Volatile Organics					
1.1-Dichloroethene	%	101	70-130	Pass	
1.1.1-Trichloroethane	%	95	70-130	Pass	
1.2-Dichlorobenzene	%	91	70-130	Pass	
1.2-Dichloroethane	%	102	70-130	Pass	
Benzene	%	79	70-130	Pass	
Trichloroethene	%	94	70-130	Pass	
LCS - % Recovery					
Heavy Metals					
Arsenic (filtered)	%	91	80-120	Pass	
Cadmium (filtered)	%	97	80-120	Pass	

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Chromium (filtered)			%	99			80-120	Pass	
Copper (filtered)			%	100			80-120	Pass	
Lead (filtered)			%	98			80-120	Pass	
Mercury (filtered)			%	102			80-120	Pass	
Nickel (filtered)			%	101			80-120	Pass	
Zinc (filtered)			%	99			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery Total Recoverable Hydrocarbons				Result 1					
TRH C6-C9	S21-Oc26688	СР	%	72			70-130	Pass	
Naphthalene	S21-Oc26688	CP	<u> </u>	96			70-130	Pass	
•	S21-Oc26688	CP	%						
TRH C6-C10	521-0020000	L CP	70	73			70-130	Pass	
Spike - % Recovery				Danult 4					
BTEX	004 0 00000	0.0	0/	Result 1			70.400	D	
Benzene	S21-Oc26688	CP	%	78			70-130	Pass	
Toluene	S21-Oc26688	CP	%	94			70-130	Pass	
Ethylbenzene	S21-Oc26688	CP	%	92			70-130	Pass	
m&p-Xylenes	S21-Oc26688	CP	%	91			70-130	Pass	
o-Xylene	S21-Oc26688	CP	%	94			70-130	Pass	
Xylenes - Total*	S21-Oc26688	CP	%	92			70-130	Pass	
Spike - % Recovery				ı	I I				
Total Recoverable Hydrocarbons				Result 1					
TRH C6-C9	S21-Oc26696	CP	%	85			70-130	Pass	
TRH C10-C14	S21-Oc26696	CP	%	118			70-130	Pass	
Naphthalene	S21-Oc26696	CP	%	87			70-130	Pass	
TRH C6-C10	S21-Oc26696	CP	%	84			70-130	Pass	
TRH >C10-C16	S21-Oc26696	CP	%	119			70-130	Pass	
Spike - % Recovery					1				
BTEX	<u> </u>			Result 1					
Benzene	S21-Oc26696	CP	%	79			70-130	Pass	
Toluene	S21-Oc26696	CP	%	84			70-130	Pass	
Ethylbenzene	S21-Oc26696	CP	%	86			70-130	Pass	
m&p-Xylenes	S21-Oc26696	CP	%	91			70-130	Pass	
o-Xylene	S21-Oc26696	CP	%	89			70-130	Pass	
Xylenes - Total*	S21-Oc26696	CP	%	90			70-130	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic (filtered)	S21-Oc26703	CP	%	83			75-125	Pass	
Cadmium (filtered)	S21-Oc26703	CP	%	89			75-125	Pass	
Chromium (filtered)	S21-Oc26703	CP	%	92			75-125	Pass	
Copper (filtered)	S21-Oc26703	CP	%	92			75-125	Pass	
Lead (filtered)	S21-Oc26703	СР	%	90			75-125	Pass	
Mercury (filtered)	S21-Oc26703	СР	%	99			75-125	Pass	
Nickel (filtered)	S21-Oc26703	СР	%	92			75-125	Pass	
Zinc (filtered)	S21-Oc26703	СР	%	90			75-125	Pass	
Test	Lab Sample ID	QA	Units	Result 1			Acceptance	Pass	Qualifying
Duplicate	•	Source					Limits	Limits	Code
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C10-C14	S21-Oc32902	NCP	mg/L	< 0.05	0.15	38	30%	Fail	Q15
TRH C15-C28	S21-Oc32902	NCP	mg/L	< 0.1	0.9	40	30%	Fail	Q15
TRH C29-C36	S21-Oc32902	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C10-C16	S21-Oc32902	NCP	mg/L	< 0.05	0.50	30	30%	Pass	
TRH >C16-C34	S21-Oc32902	NCP	mg/L	< 0.1	0.6	49	30%	Fail	Q15
			111,54/ ┗	, , , , ,		10	00/0		<u> </u>

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	S21-Oc26683	СР	mg/L	0.006	0.006	2.0	30%	Pass	
Cadmium (filtered)	S21-Oc26683	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	S21-Oc26683	CP		< 0.0002	< 0.0002	<1	30%	Pass	
()		CP	mg/L		1				
Copper (filtered)	S21-Oc26683		mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead (filtered)	S21-Oc26683	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	S21-Oc26683	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S21-Oc26683	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc (filtered)	S21-Oc26683	СР	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate					I . I				
Heavy Metals				Result 1	Result 2	RPD		<u> </u>	
Arsenic (filtered)	S21-Oc26694	CP	mg/L	0.001	0.001	9.0	30%	Pass	
Cadmium (filtered)	S21-Oc26694	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	S21-Oc26694	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	S21-Oc26694	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead (filtered)	S21-Oc26694	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	S21-Oc26694	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S21-Oc26694	CP	mg/L	0.002	0.002	6.0	30%	Pass	
Zinc (filtered)	S21-Oc26694	CP	mg/L	0.005	0.005	4.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S21-Oc26697	СР	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Naphthalene	S21-Oc26697	СР	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S21-Oc26697	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate	02.00000		g. =				2272	1 3.55	
BTEX				Result 1	Result 2	RPD		I	
Benzene	S21-Oc26697	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S21-Oc26697	CP	mg/L	< 0.002	< 0.001	<1	30%	Pass	
o-Xylene	S21-Oc26697	CP		< 0.002	< 0.002		30%	Pass	
Xvlenes - Total*		CP	mg/L			<1			
,	S21-Oc26697	CP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate				Desided	DII O	DDD		I	
Volatile Organics	00100000		,	Result 1	Result 2	RPD	222/	+	
1.1-Dichloroethane	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1-Dichloroethene	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.1-Trichloroethane	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.1.2-Tetrachloroethane	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.2-Trichloroethane	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.1.2.2-Tetrachloroethane	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dibromoethane	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichlorobenzene	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichloroethane	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2-Dichloropropane	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2.3-Trichloropropane	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.2.4-Trimethylbenzene	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3-Dichlorobenzene	S21-Oc26697	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3-Dichloropropane	S21-Oc26697	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.3.5-Trimethylbenzene	S21-Oc26697	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
1.4-Dichlorobenzene	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
2-Butanone (MEK)	S21-Oc26697	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
2-Propanone (Acetone)	S21-Oc26697	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
4-Chlorotoluene	S21-Oc26697	CP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
	021-062003/	OΓ	i iiig/∟	\ 0.001	\ ∪.∪∪1	<u> </u>	JU /0	1 000	
4-Methyl-2-pentanone (MIBK)	S21-Oc26697	СР	mg/L	< 0.005	< 0.005	<1	30%	Pass	

Duplicate									
Volatile Organics				Result 1	Result 2	RPD			
Bromobenzene	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromochloromethane	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromodichloromethane	S21-Oc26697	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromoform	S21-Oc26697	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Bromomethane	S21-Oc26697	СР	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Carbon disulfide	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Carbon Tetrachloride	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chlorobenzene	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chloroethane	S21-Oc26697	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Chloroform	S21-Oc26697	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Chloromethane	S21-Oc26697	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
cis-1.2-Dichloroethene	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
cis-1.3-Dichloropropene	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibromochloromethane	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibromomethane	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dichlorodifluoromethane	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Iodomethane	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Isopropyl benzene (Cumene)	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Methylene Chloride	S21-Oc26697	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Styrene	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Tetrachloroethene	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
trans-1.2-Dichloroethene	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
trans-1.3-Dichloropropene	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Trichloroethene	S21-Oc26697	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Trichlorofluoromethane	S21-Oc26697	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Vinyl chloride	S21-Oc26697	CP	mg/L	< 0.005	< 0.005	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic (filtered)	S21-Oc26704	CP	mg/L	0.006	0.006	2.0	30%	Pass	
Cadmium (filtered)	S21-Oc26704	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	S21-Oc26704	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	S21-Oc26704	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead (filtered)	S21-Oc26704	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury (filtered)	S21-Oc26704	CP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel (filtered)	S21-Oc26704	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc (filtered)	S21-Oc26704	CP	mg/L	0.012	0.012	2.0	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

N02

Andrew Black Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Senior Analyst-Metal (NSW) John Nguyen Roopesh Rangarajan Senior Analyst-Volatile (NSW)

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CH	IAIN OF CUS	STODY I	RECORD) [コEurofins m Sydney Lab	gt Unit F3 Buildin P:+61 2 9900 E: EnviroSam	ng F, 16 Mars Road, L 0 8400 npleNSW@eurofins.co	ane Cove West, NS\	W 2066	□ Euro Bris	ofins n bane La	b Unit 1, 21 Smallwood P: +61 7 3902 4600 E: EnviroSampleQLD	Place, Muramie, QLD 4172 @eurofins.com,au] Eur Mel	ofins	mgt ne Lab	2 Kingst P : +61 E : Envi	iton Town Clo 3 8564 5000 viroSampleVic	ose, Oakleigh, VIC 3166 F: +61 3 8564 509 @eurofins.com.au	90
Company	WSP Australia	l		Purch	ase Order					Project Mana	ger	Richie Lamont				Proj	ect Nan	me	Re	d bus	s servi	ces Bateau	Вау
Address	Level 3/51-55 I 2300	Bolton St, N	ewcastle NS	Euro W Qu	fins mgt uote №					Project №		PS126618			E		onic Res ormat		ex	cel an	nd Esda	at	
Contact Name	Jessica Watso	on		iltered")												Email	for Res	aults	Rie	chie L	.amoni	t Richie.La	mont@wsp.cor
Contact Phone №	420200359			specify "Total" or "Filter	<u>sa</u>											Turr	n Aroun	nd	□ 1 c	DAY*	[□ _{2 DAY*}	□ 3 DAY*
Special Direction				Analysis ested, please spe	B7: TRH, BTEX, VOCs, Metals										9		iremen	nêa .	☑ 5 €	DAY (Std	d.) [Other (* Surcharges apply
				A are reques	ВТЕХ									CIONHO			-	Conta	ainers	1-1			d of Shipment
Relinquished by	Jessica Watso	n		Where metals	77: TRH,													19	g	ž.		Courier (#	
(Signature)	JW			(Note Will											1 Diseho	250ml, Plastic	125mL Plastic	200mL Amber Glass	40mLvial 125mL Amber Glass	Jar		Hand Delivere	ed
(Time / Date)	10 : 00	11/10/21													~	1L.	125m	200mL A	40r			Postal	
No	Client Sample ID		Date	Matrix																	Sa	mple Comment	ts / DG Hazard Warnir
14	MW4		8/10/21	water	X																		
2	MW6		7/10/21	water	X													П		П			
3	MW9		7/10/21	water	X												П						
4	MW10		7/10/21	water	×															П			
5	MW11		7/10/21	water	×													П					
ō	MW12		7/10/21	water	X																		
7.	MW13		7/10/21	water	X										t								
8	MW14		7/10/21	water	X																		
9	MW15		7/10/21	water	X											T							
10	MW16		7/10/21	water	X												П						
11	MW17		7/10/21	water	X																		
12.	MW19		7/10/21	water	X																		
Laboratory Use Onl	Received By				SYD BNE	MEL PER	ADL NEW	DAR	Date	1_1_	-	Time	_:_	Signature				- 17		* - / -		Temperature	
	Received By				SYD BNE	MEL PER	ADL NEW	DAR	Date		-	Time	_:_	Signature								Report №	831 781

.. -...

CHAIN OF CUSTODY RECORD Eurofins | mgt Eurofins | mgt Eurofins | mgt Sydney Lab Unit F3 Building F, 16 Mers Road, Lane Cove West, NSW 2066 Unit 1, 21 Smallwood Place, Murarrie, QLD 4172 2 Kingston Town Close, Oakleigh, VIC 3166 P:+61 3 8564 5000 F:+61 3 8564 5090 P : +61 2 9900 8400 P: +61 7 3902 4600 E : EnviroSampleNSW@eurofins.com.au Brisbane Lab Melbourne Lab E : EnviroSampleQLD@eurofins.com.au E : EnviroSampleVic@eurofins.com.au Сотралу **WSP** Australia Purchase Order Richie Lamont Project Manager Project Name Red bus services Bateau Bay Eurofins | mgt Electronic Results PS126618 Project № excel and Esdat Level 3/51-55 Bolton St, Newcastle NSW Quote № Format Address 2300 Richie Lamont Richie.Lamont@wsp.com Email for Results Contact Name Jessica Watson Contact Phone № 420200359 ☐ 1 DAY* ☐ 2 DAY* ☐ 3 DAY* B7: TRH, BTEX, VOCs, Metals Turn Around * Surcharges apply Requirements 5 DAY (Std.) Other (Metals (8 metals) TRH (C6-C10) Special Direction ON HOLD Containers Method of Shipment Jessica Watson Relinquished by ☑ Courier (# 200mL Amber Glass (Signature) JW 250mL Plastic Hand Delivered 125mL Plastic 40mLvial Postal (Time / Date) 11/10/21 <u>10 : 00</u> Client Sample ID Date Matrix Sample Comments / DG Hazard Warning MW20 8/10/21 water MW21 8/10/21 water MW23 7/10/21 X water MW26 8/10/21 water MW30 8/10/21 water MW32 8/10/21 X water MW33 8/10/21 water MW34 8/10/21 water RB02 X 8/10/21 water 10 TB01 X 8/10/21 water QA01 7/10/21 water 12 QA01a 7/10/21 water Please forward to AL Received By SYD | BNE | MEL | PER | ADL | NEW | DAR Date __/_/__ Time Signature Temperature Laboratory Use Only

Date

SYD | BNE | MEL | PER | ADL | NEW | DAR

Received By

Signature

Report №

Time

CH.	AIN OF CUS		KECORD		Sydney	s mgt Lab	P:+61 2 9904 E:EnviroSam	g P, 16 Mars Post 1 8400 pleNSW@eurofins	, Lane Cove West, NSW 2066 .com.au	☐ Eurofi Brisba	ins n ane La	ngt Unit 1, 21 Smallwood Place, Murarrie, QLD 4 P: +61 7, 3902 4500 E: EnviroSampleQLD@eurofins.com.au	172			Eurol Melbo	fins n ourne	ngt Lab	2 Kingston P: +61 3 85 E: EnviroS:	Fown Close, Oakleigh, VIC 316 64 5000 F: +61 3 8564 56 ampleVic@eurofins.com.au	66 090
Company	WSP Australia			Purcha	ase Order					Project Manage	эг	Richie Lamont			Project	Name		Red	bus s	ervices Bateau	ı В а у
Address	Level 3/51-55 E 2300	Bolton St, Ne	ewcastle NSW	Eurof Qu	ins mgt ote №					Project №		PS126618		Ele	ectronic Forr		Its	exc	el and	Esdat	
Contact Name	Jessica Watso	n		Filtered")										E	mail for	Resul	ts	Ricl	nie Lar	nont Richie.La	amont@wsp.com
Contact Phone №	420200359			spacify "Total" or "Filtered" }											Turn A			J _{1DA}	\Y*	☐ 2 DAY*	3 DAY*
Special Direction				Analysis quested, please	TRH	втех	VOCs	Metals (8 metals)					ON HOLD		Require		ontaine		Y (Std.)		d of Shipment
Relinquished by	Jessica Watso	n		Where metals are re	·			Metals					No		.0	.0	lass	lass		Courier (#	
(Time / Date)	10 : 00	11/10/21		(Note:										1L Plastic	250mL Plastic	125mL Plastic	200mL Amber Glass 40mLvial	125mL Amber Glass	Jar	Hand Delive	red
No	Client Sample ID		Date	Matrix												ć	2	1		Sample Commen	nts / DG Hazard Warnir
3	QA02		7/10/21	water									×								
2	QA02a		7/10/21	water									×								
3																					
5																					
5																			+		
7.																	H				
8																					
9											t										
10																Ť					
н																					
12																				Please forwa	rd to ALS
Laboratory Use Only	Received By							ADL NEW				Time:	Signature							Temperature	
	Received By				SYD B	BNE MEI	L PER	ADL NEW				Time:	Signature							Report №	831781

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Sydney Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

ABN: 91 05 0159 898 NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450

IANZ # 1290

Company Name:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

WSP Australia P/L Newcastle

Address:

PO Box 1162 Newcastle NSW 2300

Project Name:

PS126618

Project ID:

RED BUS SERVICES BATEAU BAY

Order No.: Report #:

Phone:

Eurofins Environment Testing Australia Pty Ltd

831991 02 4929 8300

02 4929 7299 Fax:

Eurofins Analytical Services Manager: Andrew Black

5 Day

Oct 12, 2021 8:01 AM

Oct 19, 2021

Richie Lamont

			mple Detail			Asbestos - AS4964	HOLD	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH
-		ory - NATA # 12		4						
		- NATA # 1261				X	Х	Х	Х	X
		y - NATA # 1261								\vdash
_		y - NATA # 1261)						\vdash
		NATA # 2377 Sit	te # 2370							\vdash
No	rnal Laboratory Sample ID	Sample Date	Sampling	Matrix	LAB ID					
NO	Sample 1D	Sample Date	Time	Watrix	LABID					
1	BH1-0.1-0.2	Oct 06, 2021		Soil	S21-Oc26648	Х		Х	Х	
2	BH1-0.4-0.5	Oct 06, 2021		Soil	S21-Oc26649			Х	Х	
3	BH1-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26650		Х			
4	BH2-0.1-0.2	Oct 06, 2021		Soil	S21-Oc26651		Х			
5	BH2-0.3-0.4	Oct 06, 2021		Soil	S21-Oc26652	Х		Х	Х	
6	BH2-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26653	Х		Х	Х	
7	BH2-4.0	Oct 06, 2021		Soil	S21-Oc26654		Х			
8	BH3-0.1-0.2	Oct 06, 2021		Soil	S21-Oc26655	Х		Х	Х	
9	BH3-0.4-0.5	Oct 06, 2021		Soil	S21-Oc26656			Χ	Х	

Melbourne 6 Monterey Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Sydney Unit F3, Building F Dandenong South VIC 3175 16 Mars Road Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Eurofins Environment Testing Australia Pty Ltd

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Received:

Priority:

Contact Name:

Due:

Perth

Auckland Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Oct 12, 2021 8:01 AM

Oct 19, 2021

Richie Lamont

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1290

Company Name:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

WSP Australia P/L Newcastle

Address:

PO Box 1162 Newcastle NSW 2300

Project Name:

PS126618

Project ID:

RED BUS SERVICES BATEAU BAY

Order No.: Report #:

Phone:

831991 02 4929 8300

02 4929 7299 Fax:

Eurofins Analytical Services Manager: Andrew Black

Mali	oourne I aborat	Sa ory - NATA # 12	mple Detail	.4		Asbestos - AS4964	HOLD	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH
		ory - NATA # 12 - NATA # 1261		4		X	X	Х	Х	X
		ry - NATA # 1201				<u> </u>			^	
		y - NATA # 1261								
		NATA # 2377 Si		<u>′</u>						
	ernal Laborator									
10	BH4-0.2-0.3	Oct 06, 2021		Soil	S21-Oc26657	Х		Х	Х	
11	BH4-0.4-0.5	Oct 06, 2021		Soil	S21-Oc26658			Х	Х	
12	BH4-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26659		Х			
13	BH5-0.2-0.3	Oct 06, 2021		Soil	S21-Oc26660	Х		Х	Х	
14	BH5-0.5-0.6	Oct 06, 2021		Soil	S21-Oc26661			Х	Х	
15	BH5-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26662		Х			
16	BH6-0.2-0.3	Oct 06, 2021		Soil	S21-Oc26663	Х		Х	Х	
17	BH3-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26664		Х			
18	BH6-0.4-0.5	Oct 06, 2021		Soil	S21-Oc26665			Х	Х	
19	BH6-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26666		Х			
20	BH7-0.2-0.3	Oct 06, 2021		Soil	S21-Oc26667	Х		Х	Х	

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Eurofins Environment Testing Australia Pty Ltd

Sydney

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

Received:

Contact Name:

Priority:

Due:

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

Oct 12, 2021 8:01 AM

Oct 19, 2021

Richie Lamont

Company Name:

web: www.eurofins.com.au

email: EnviroSales@eurofins.com

WSP Australia P/L Newcastle

Address:

PO Box 1162 Newcastle NSW 2300

Project Name:

PS126618

Project ID:

RED BUS SERVICES BATEAU BAY

Order No.:

Report #: 831991

Phone: 02 4929 8300 02 4929 7299 Fax:

Eurofins Analytical Services Manager: Andrew Black

			mple Detail			Asbestos - AS4964	HOLD	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH
Mell	oourne Laborat	ory - NATA # 12	61 Site # 125	4						
	ney Laboratory					Х	X	Х	Х	Х
-	bane Laborator	-								
	field Laboratory									
-	h Laboratory - I		te # 2370							
	ernal Laboratory			I						
21	BH7-0.5-0.6	Oct 06, 2021		Soil	S21-Oc26668			Х	Х	
22	BH7-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26669		X			
23	BH8-0.1-0.2	Oct 06, 2021		Soil	S21-Oc26670	X		Х	Х	
24	BH8-0.4-0.5	Oct 06, 2021		Soil	S21-Oc26671			Х	Х	
25	BH8-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26672		Х			
26	BH9-0.1-0.2	Oct 06, 2021		Soil	S21-Oc26673			Х	Х	
27	BH9-0.4-0.5	Oct 06, 2021		Soil	S21-Oc26674		Х			
28	BH9-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26675		Х			
29	BH9-1.9-2.0	Oct 06, 2021		Soil	S21-Oc26676	Х		Х	Х	
30	BH10-0.1-0.2	Oct 06, 2021		Soil	S21-Oc26677	Х		Х	Х	
31	BH10-0.4-0.5	Oct 06, 2021		Soil	S21-Oc26678			Х	Х	

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

ABN: 50 005 085 521

Eurofins Environment Testing Australia Pty Ltd

Sydney

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Oct 12, 2021 8:01 AM

NZBN: 9429046024954

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 19, 2021

Richie Lamont

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

WSP Australia P/L Newcastle

Address:

PO Box 1162 Newcastle NSW 2300

Project Name:

PS126618

Project ID:

RED BUS SERVICES BATEAU BAY

Order No.: Report #:

Phone:

831991 02 4929 8300

02 4929 7299 Fax:

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Asbestos - AS4964	HOLD	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH
Mell	oourne Laborat	ory - NATA # 12	61 Site # 125	i4						
		- NATA # 1261				X	Х	Х	Х	Х
		ry - NATA # 1261								
		y - NATA # 1261)						
		NATA # 2377 Sit	e # 2370							
	rnal Laboratory	1		1						
32	BH10-0.7-0.8	Oct 06, 2021		Soil	S21-Oc26679		Х			
33	RB01	Oct 06, 2021		Water	S21-Oc26680				Х	
34	TB01	Oct 06, 2021		Soil	S21-Oc26681					Х
35	QA03	Oct 06, 2021		Soil	S21-Oc26682			Х	Х	
36	TS01	Oct 06, 2021		Soil	S21-Oc28382					Х
37	QA01	Oct 06, 2021		Soil	S21-Oc28383		Х			
38	QA02	Oct 06, 2021		Soil	S21-Oc28384		Х			
39	QA02A	Oct 06, 2021		Soil	S21-Oc28385		Х			
40	TS LAB	Oct 06, 2021		Soil	S21-Oc28386					Х
Test	Counts					11	15	21	22	3

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175
Phone: +61 3 8564 5000
Lane Cove We NATA # 1261 Site # 1254

Unit F3 Building F NATA # 1261 Site # 18217

Brisbane NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 www.eurofins.com.au

ABN: 91 05 0159 898

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 6253 4444 NATA # 2377 Site # 2370 EnviroSales@eurofins.com

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Sample Receipt Advice

Company name:

WSP Australia P/L Newcastle

Contact name: Project name:

Richie Lamont PS126618

Project ID:

RED BUS SERVICES BATEAU BAY

Turnaround time:

Date/Time received

Oct 12, 2021 8:01 AM

Eurofins reference

831991

Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt: 13 degrees Celsius.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.

X Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted.

N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Andrew Black on phone: (+61) 2 9900 8490 or by email: AndrewBlack@eurofins.com

Results will be delivered electronically via email to Richie Lamont - richie.lamont@wsp.com.

Note: A copy of these results will also be delivered to the general WSP Australia P/L Newcastle email address.

WSP Australia P/L Newcastle PO Box 1162 Newcastle NSW 2300

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Richie Lamont

Report 831991-S
Project name PS126618

Project ID RED BUS SERVICES BATEAU BAY

Received Date Oct 12, 2021

Client Sample ID			G01BH1-0.1-0.2	BH1-0.4-0.5	BH2-0.3-0.4	BH2-0.9-1.0
Sample Matrix			Soil	Soil	Soil	Soil
•				1		
Eurofins Sample No.			S21-Oc26648	S21-Oc26649	S21-Oc26652	S21-Oc26653
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 400	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 1000	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 1000	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 1000	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 1000	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 1000	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 2000	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 2000	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 2000	< 100	< 100	< 100
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	93	77	94	87
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	0.6	0.6	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	1.0	1.0	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.3	1.3	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	0.6	0.6	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			G01BH1-0.1-0.2	BH1-0.4-0.5	BH2-0.3-0.4	BH2-0.9-1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc26648	S21-Oc26649	S21-Oc26652	S21-Oc26653
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	0.6	0.6	< 0.5
2-Fluorobiphenyl (surr.)	1	%	89	105	92	122
p-Terphenyl-d14 (surr.)	1	%	87	78	77	103
Heavy Metals						
Arsenic	2	mg/kg	6.9	< 2	2.4	2.5
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	50	< 5	9.0	12
Copper	5	mg/kg	23	< 5	< 5	9.7
Lead	5	mg/kg	6.1	< 5	5.5	16
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	43	< 5	< 5	< 5
Zinc	5	mg/kg	26	< 5	15	51
% Moisture	1	%	1.2	20	8.7	17

Client Sample ID			BH3-0.1-0.2	BH3-0.4-0.5	G01BH4-0.2-0.3	BH4-0.4-0.5	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins Sample No.			S21-Oc26655	S21-Oc26656	S21-Oc26657	S21-Oc26658	
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons							
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C10-C14	20	mg/kg	< 20	< 20	< 200	< 20	
TRH C15-C28	50	mg/kg	< 50	< 50	< 500	< 50	
TRH C29-C36	50	mg/kg	< 50	< 50	< 500	< 50	
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 500	< 50	
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20	
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20	
TRH >C10-C16	50	mg/kg	< 50	< 50	< 500	< 50	
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 500	< 50	
TRH >C16-C34	100	mg/kg	< 100	< 100	< 1000	< 100	
TRH >C34-C40	100	mg/kg	< 100	< 100	< 1000	< 100	
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 1000	< 100	
BTEX							
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3	
4-Bromofluorobenzene (surr.)	1	%	88	67	50	85	

Client Sample ID			BH3-0.1-0.2	BH3-0.4-0.5	G01BH4-0.2-0.3	BH4-0.4-0.5	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins Sample No.			S21-Oc26655	S21-Oc26656	S21-Oc26657	S21-Oc26658	
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	
Test/Reference	LOR	Unit					
Polycyclic Aromatic Hydrocarbons							
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6	
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2	
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Fluoranthene	0.5	mg/kg	0.5	< 0.5	< 0.5	< 0.5	
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Total PAH*	0.5	mg/kg	0.5	< 0.5	< 0.5	< 0.5	
2-Fluorobiphenyl (surr.)	1	%	141	138	93	141	
p-Terphenyl-d14 (surr.)	1	%	113	103	81	118	
Heavy Metals							
Arsenic	2	mg/kg	< 2	< 2	3.2	2.7	
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4	
Chromium	5	mg/kg	6.0	< 5	65	11	
Copper	5	mg/kg	29	7.9	29	< 5	
Lead	5	mg/kg	43	15	10	< 5	
Mercury	0.1	mg/kg	0.1	< 0.1	< 0.1	< 0.1	
Nickel	5	mg/kg	< 5	< 5	65	< 5	
Zinc	5	mg/kg	62	44	44	< 5	
% Moisture	1	%	18	10.0	10	8.9	

Client Sample ID Sample Matrix			BH5-0.2-0.3 Soil	BH5-0.5-0.6 Soil	BH6-0.2-0.3 Soil	BH6-0.4-0.5 Soil
Eurofins Sample No.			S21-Oc26660	S21-Oc26661	S21-Oc26663	S21-Oc26665
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	120	410	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	120	410	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20

Client Sample ID			BH5-0.2-0.3	BH5-0.5-0.6	BH6-0.2-0.3	BH6-0.4-0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc26660	S21-Oc26661	S21-Oc26663	S21-Oc26665
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH >C10-C16	50	mg/kg	< 50	64	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	64	< 50	< 50
TRH >C16-C34	100	mg/kg	150	390	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	150	454	< 100	< 100
BTEX	1					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	89	77	97	79
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene Total PAH*	0.5 0.5	mg/kg mg/kg	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
2-Fluorobiphenyl (surr.)	1	// // // // // // // // // // // // //	110	134	131	121
p-Terphenyl-d14 (surr.)	1	%	94	111	107	96
Heavy Metals			57	111	107	
Arsenic	2	mg/kg	3.4	2.7	3.8	3.3
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	24	11	14	12
Copper	5	mg/kg	8.2	< 5	< 5	< 5
Lead	5	mg/kg	< 5	< 5	< 5	< 5
Mercury	0.1	mg/kg	< 0.1	0.1	< 0.1	< 0.1
Nickel	5	mg/kg	18	< 5	< 5	< 5
Zinc	5	mg/kg	20	< 5	< 5	< 5
% Moisture	1	%	6.5	8.4	10	12

011 10 115						
Client Sample ID			BH7-0.2-0.3	BH7-0.5-0.6	BH8-0.1-0.2	BH8-0.4-0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc26667	S21-Oc26668	S21-Oc26670	S21-Oc26671
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	94	88	129	93
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	0.6	0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	1.0	0.9
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.3	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	0.6	0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	0.6	0.5
2-Fluorobiphenyl (surr.)	1	%	134	121	86	86
p-Terphenyl-d14 (surr.)	1	%	101	96	62	59
Heavy Metals		<u> </u>				
Arsenic	2	mg/kg	3.8	3.8	2.7	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	12	12	11	< 5
Copper	5	mg/kg	< 5	< 5	18	< 5

Client Sample ID Sample Matrix			BH7-0.2-0.3 Soil	BH7-0.5-0.6 Soil	BH8-0.1-0.2 Soil	BH8-0.4-0.5 Soil
Eurofins Sample No.			S21-Oc26667	S21-Oc26668	S21-Oc26670	S21-Oc26671
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit				
Heavy Metals	·					
Lead	5	mg/kg	< 5	< 5	8.4	< 5
Mercury	0.1	mg/kg	0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5	< 5	< 5
Zinc	5	mg/kg	< 5	< 5	29	8.1
% Moisture	1	%	8.0	8.2	8.9	7.2

Client Sample ID			BH9-0.1-0.2	BH9-1.9-2.0	BH10-0.1-0.2	BH10-0.4-0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			S21-Oc26673	S21-Oc26676	S21-Oc26677	S21-Oc26678
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons	·	·				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	66	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	66	< 50	< 50	< 50
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	120	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	120	< 100	< 100	< 100
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	92	119	72	86
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			BH9-0.1-0.2	BH9-1.9-2.0	BH10-0.1-0.2	BH10-0.4-0.5	
Sample Matrix			Soil	Soil	Soil	Soil	
Eurofins Sample No.			S21-Oc26673	S21-Oc26676	S21-Oc26677	S21-Oc26678	
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	Oct 06, 2021	
Test/Reference	LOR	Unit					
Polycyclic Aromatic Hydrocarbons							
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
2-Fluorobiphenyl (surr.)	1	%	97	129	146	136	
p-Terphenyl-d14 (surr.)	1	%	83	107	120	112	
Heavy Metals							
Arsenic	2	mg/kg	2.3	< 2	< 2	< 2	
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4	
Chromium	5	mg/kg	7.1	< 5	< 5	< 5	
Copper	5	mg/kg	5.3	< 5	< 5	< 5	
Lead	5	mg/kg	5.3	14	6.7	< 5	
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	
Nickel	5	mg/kg	< 5	< 5	< 5	< 5	
Zinc	5	mg/kg	14	14	22	< 5	
% Moisture	1	%	3.5	12	11	8.5	

Client Sample ID			TB01	QA03	TS01
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S21-Oc26681	S21-Oc26682	S21-Oc28382
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons					
TRH C6-C9	20	mg/kg	< 20	< 20	-
TRH C10-C14	20	mg/kg	-	< 20	-
TRH C15-C28	50	mg/kg	-	< 50	-
TRH C29-C36	50	mg/kg	-	< 50	-
TRH C10-C36 (Total)	50	mg/kg	-	< 50	-
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	-
TRH >C10-C16	50	mg/kg	-	< 50	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	-	< 50	-
TRH >C16-C34	100	mg/kg	-	< 100	-
TRH >C34-C40	100	mg/kg	-	< 100	-
TRH >C10-C40 (total)*	100	mg/kg	-	< 100	-
ВТЕХ					
Benzene	0.1	mg/kg	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	_
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	94	90	-

Client Sample ID			TB01	QA03	TS01
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			S21-Oc26681	S21-Oc26682	S21-Oc28382
Date Sampled			Oct 06, 2021	Oct 06, 2021	Oct 06, 2021
Test/Reference	LOR	Unit			
Polycyclic Aromatic Hydrocarbons	2011	Orac			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	_	< 0.5	_
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	_	0.6	-
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	_	1.2	_
Acenaphthene	0.5	mg/kg	_	< 0.5	_
Acenaphthylene	0.5	mg/kg	_	< 0.5	_
Anthracene	0.5	mg/kg	_	< 0.5	_
Benz(a)anthracene	0.5	mg/kg	_	< 0.5	_
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5	_
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	_	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5	-
Chrysene	0.5	mg/kg	-	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5	-
Fluoranthene	0.5	mg/kg	-	< 0.5	-
Fluorene	0.5	mg/kg	-	< 0.5	_
ndeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5	_
Naphthalene	0.5	mg/kg	-	< 0.5	-
Phenanthrene	0.5	mg/kg	-	< 0.5	-
Pyrene	0.5	mg/kg	-	< 0.5	-
Total PAH*	0.5	mg/kg	-	< 0.5	=
2-Fluorobiphenyl (surr.)	1	%	-	137	-
p-Terphenyl-d14 (surr.)	1	%	-	111	-
Heavy Metals	•	•			
Arsenic	2	mg/kg	-	6.9	-
Cadmium	0.4	mg/kg	-	< 0.4	=
Chromium	5	mg/kg	-	28	-
Copper	5	mg/kg	-	9.5	-
Lead	5	mg/kg	-	15	-
Mercury	0.1	mg/kg	-	< 0.1	-
Nickel	5	mg/kg	-	9.4	-
Zinc	5	mg/kg	-	61	-
% Moisture	1	%	-	7.1	-
TRH C6-C10	1	%	-	-	99
Total Recoverable Hydrocarbons					
Naphthalene	1	%	-	-	91
TRH C6-C9	1	%	-	-	97
BTEX					
Benzene	1	%	-	-	99
Ethylbenzene	1	%	-	-	99
m&p-Xylenes	1	%	-	-	100
o-Xylene	1	%	-	-	100
Toluene	1	%	-	-	94
Xylenes - Total	1	%	-	-	100
4-Bromofluorobenzene (surr.)	1	%	-	-	146

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Oct 19, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 19, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons	Sydney	Oct 19, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Oct 19, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 19, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Oct 19, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	Oct 19, 2021	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Sydney	Oct 13, 2021	14 Days

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

ABN: 91 05 0159 898

NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061

Oct 12, 2021 8:01 AM

Phone: +64 9 526 45 51

Oct 19, 2021

Richie Lamont

IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Address:

Company Name:

WSP Australia P/L Newcastle

PO Box 1162

Newcastle NSW 2300

Project Name:

PS126618 Project ID:

RED BUS SERVICES BATEAU BAY

Order No.: Report #:

831991

Phone: 02 4929 8300 02 4929 7299 Fax:

Eurofins Analytical Services Manager: Andrew Black

		Asbestos - AS4964	HOLD	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH				
Melk	ourne Laborat									
Sydney Laboratory - NATA # 1261 Site # 18217								Х	Х	Х
Brisbane Laboratory - NATA # 1261 Site # 20794										
May	field Laborator	y - NATA # 1261	Site # 25079	1						
Pert	h Laboratory -	NATA # 2377 Sit	te # 2370							
Exte	rnal Laboratory	/								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	BH1-0.1-0.2	Oct 06, 2021		Soil	S21-Oc26648	Х		Х	Х	
2	BH1-0.4-0.5	Oct 06, 2021		Soil	S21-Oc26649			Х	Х	
3	BH1-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26650		Х			
4	BH2-0.1-0.2	Oct 06, 2021		Soil	S21-Oc26651		Х			
5	BH2-0.3-0.4	Oct 06, 2021		Soil	S21-Oc26652	Х		Х	Х	
6	BH2-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26653	Х		Х	Х	
7	BH2-4.0	Oct 06, 2021		Soil	S21-Oc26654		Х			
8	BH3-0.1-0.2	Oct 06, 2021		Soil	S21-Oc26655	Х		Х	Х	
9	BH3-0.4-0.5	Oct 06, 2021		Soil	S21-Oc26656			Х	Х	

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Contact Name:

Priority:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Oct 12, 2021 8:01 AM

Oct 19, 2021

Richie Lamont

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

WSP Australia P/L Newcastle

Address:

PO Box 1162 Newcastle NSW 2300

Project Name: PS126618

Project ID:

RED BUS SERVICES BATEAU BAY

Order No.:

Phone:

Report #: 831991 02 4929 8300

02 4929 7299 Fax:

Eurofins Analytical Services Manager: Andrew Black

Eurofins Suite B7 Moisture Set HOLD Asbestos - AS4964 Sample Detail											
Melbourne Laboratory - NATA # 1261 Site # 1254											
Sydney Laboratory - NATA # 1261 Site # 18217						X	Х	Х	Х	X	
Brisbane Laboratory - NATA # 1261 Site # 20794											
Mayfield Laboratory - NATA # 1261 Site # 25079											
Perth Laboratory - NATA # 2377 Site # 2370											
External Laboratory											
10	BH4-0.2-0.3	Oct 06, 2021		Soil	S21-Oc26657	X		Х	Х		
11	BH4-0.4-0.5	Oct 06, 2021		Soil	S21-Oc26658			Х	Х		
12	BH4-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26659		Х				
13	BH5-0.2-0.3	Oct 06, 2021		Soil	S21-Oc26660	X		Х	Х		
14	BH5-0.5-0.6	Oct 06, 2021		Soil	S21-Oc26661			Х	Х		
15	BH5-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26662		Х				
16	BH6-0.2-0.3	Oct 06, 2021		Soil	S21-Oc26663	X		Х	X		
17	BH3-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26664		Х				
18	BH6-0.4-0.5	Oct 06, 2021		Soil	S21-Oc26665			Х	Х		
19	BH6-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26666		Х				
20	BH7-0.2-0.3	Oct 06, 2021		Soil	S21-Oc26667	Х		Х	Х		

Eurofins Environment Testing Australia Pty Ltd

Sydney

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane Unit F3, Building F 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Contact Name:

Priority:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

ABN: 91 05 0159 898

Auckland

NZBN: 9429046024954

Oct 19, 2021

Richie Lamont

Oct 12, 2021 8:01 AM

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Christchurch 7675 Penrose, Auckland 1061 Phone: +64 9 526 45 51 Phone: 0800 856 450 IANZ # 1327 IANZ # 1290

email: EnviroSales@eurofins.com **Company Name:**

web: www.eurofins.com.au

WSP Australia P/L Newcastle

Address: PO Box 1162

Newcastle NSW 2300

Project Name:

PS126618

Project ID:

RED BUS SERVICES BATEAU BAY

Order No.:

Report #: 831991 Phone: 02 4929 8300

02 4929 7299 Fax:

Eurofins Analytical Services Manager: Andrew Black

BTEXN and Volatile TRH Eurofins Suite B7 Moisture Set HOLD Asbestos - AS4964 Sample Detail											
Melbourne Laboratory - NATA # 1261 Site # 1254											
Sydney Laboratory - NATA # 1261 Site # 18217						Х	Х	Х	Х	Х	
Brisbane Laboratory - NATA # 1261 Site # 20794											
Mayfield Laboratory - NATA # 1261 Site # 25079											
Perth Laboratory - NATA # 2377 Site # 2370											
External Laboratory											
21	BH7-0.5-0.6	Oct 06, 2021		Soil	S21-Oc26668			Х	Х		
22	BH7-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26669		Х				
23	BH8-0.1-0.2	Oct 06, 2021		Soil	S21-Oc26670	X		Х	Х		
24	BH8-0.4-0.5	Oct 06, 2021		Soil	S21-Oc26671			Х	Х		
25	BH8-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26672		Х				
26	BH9-0.1-0.2	Oct 06, 2021		Soil	S21-Oc26673			Х	Х		
27	BH9-0.4-0.5	Oct 06, 2021		Soil	S21-Oc26674		Х		<u> </u>		
28	BH9-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26675		Х		<u> </u>		
29	BH9-1.9-2.0	Oct 06, 2021		Soil	S21-Oc26676	X		Х	Х		
30	BH10-0.1-0.2	Oct 06, 2021		Soil	S21-Oc26677	Х		Х	Х		
31	BH10-0.4-0.5	Oct 06, 2021		Soil	S21-Oc26678			Х	Х		

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 19, 2021

Richie Lamont

Oct 12, 2021 8:01 AM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

WSP Australia P/L Newcastle

Address:

PO Box 1162 Newcastle NSW 2300

Project Name:

PS126618

Project ID:

RED BUS SERVICES BATEAU BAY

Order No.: Report #:

Phone:

831991 02 4929 8300

02 4929 7299 Fax:

Eurofins Analytical Services Manager: Andrew Black

	Sample Detail								Eurofins Suite B7	BTEXN and Volatile TRH
Melb	ourne Laborato	ory - NATA # 12	61 Site # 125	4						
Sydr	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х
Brisl	bane Laborator	y - NATA # 126	1 Site # 20794	ı						
May	ield Laboratory	/ - NATA # 1261	Site # 25079							
Perti	h Laboratory - N	NATA # 2377 Sit	te # 2370							
Exte	rnal Laboratory	<u>.</u>								
32	BH10-0.7-0.8	Oct 06, 2021		Soil	S21-Oc26679		Х			
33	RB01	Oct 06, 2021		Water	S21-Oc26680				Х	
34	TB01	Oct 06, 2021		Soil	S21-Oc26681					Х
35	QA03	Oct 06, 2021		Soil	S21-Oc26682			Х	Х	
36	TS01	Oct 06, 2021		Soil	S21-Oc28382					Х
37	QA01		Х							
38	QA02		Х							
39	39 QA02A Oct 06, 2021 Soil S21-Oc28385									
40	40 TS LAB Oct 06, 2021 Soil S21-Oc28386									Х
Test	est Counts								22	3

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs...

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Report Number: 831991-S

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	, , ,				
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank		10.0	1 1 3.6	1 . 0.00	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank	IIIg/kg		0.3	1 433	
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury			0.1	Pass	
Nickel	mg/kg	< 0.1	5	Pass	
	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5		rass	
LCS - % Recovery					
Total Recoverable Hydrocarbons	0/	00	70.400	Desir	
TRH C6-C9	%	92	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C10-C14			%	115		70-130	Pass	
Naphthalene			%	84		70-130	Pass	
Naphthalene			%	86		70-130	Pass	
TRH C6-C10			%	89		70-130	Pass	
TRH C6-C10			%	86		70-130	Pass	
TRH >C10-C16			%	112		70-130	Pass	
LCS - % Recovery								
ВТЕХ								
Benzene			%	112		70-130	Pass	
Toluene			%	94		70-130	Pass	
Ethylbenzene			%	95		70-130	Pass	
m&p-Xylenes			%	94		70-130	Pass	
o-Xylene			%	94		70-130	Pass	
Xylenes - Total*			%	94		70-130	Pass	
LCS - % Recovery				-				
Polycyclic Aromatic Hydrocarbons								
Acenaphthene			%	119		70-130	Pass	
Acenaphthylene			%	122		70-130	Pass	
Anthracene			%	103		70-130	Pass	
Benz(a)anthracene			%	126		70-130	Pass	
Benzo(a)pyrene			%	129		70-130	Pass	
Benzo(b&j)fluoranthene			%	117		70-130	Pass	
Benzo(g.h.i)perylene			%	121		70-130	Pass	
Benzo(k)fluoranthene			%	121		70-130	Pass	
•				124			Pass	
Chrysene Dibanz(a b)anthragena			%	124		70-130	Pass	
Dibenz(a.h)anthracene			%			70-130		
Fluoranthene			%	129		70-130	Pass	
Fluorene			%	125		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	128		70-130	Pass	
Naphthalene			%	120		70-130	Pass	
Phenanthrene			%	119		70-130	Pass	
Pyrene			%	127		70-130	Pass	
LCS - % Recovery				T	Т			
Heavy Metals							_	
Arsenic			%	88		80-120	Pass	
Cadmium			%	88		80-120	Pass	
Chromium			%	90		80-120	Pass	
Copper			%	89		80-120	Pass	
Lead			%	90		80-120	Pass	
Mercury			%	92		80-120	Pass	
Nickel			%	90		80-120	Pass	
Zinc	T		%	87		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons	i	г -		Result 1				
TRH C10-C14	S21-Oc31566	NCP	%	108		70-130	Pass	
TRH >C10-C16	S21-Oc31566	NCP	%	104		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbons				Result 1				
TRH C6-C9	S21-Oc26661	CP	%	79		70-130	Pass	
Naphthalene	S21-Oc26661	CP	%	78		70-130	Pass	
TRH C6-C10	S21-Oc26661	CP	%	80		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				

Cade Code Code	Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Ethylenzene	Benzene	S21-Oc26661	СР	%	91			70-130	Pass	
Machael	Toluene	S21-Oc26661	CP	%	75			70-130	Pass	
ci-yiene S21 Ocz6661 CP % 70 V 70.30 Pass Pass Yo-130 Pass Zybers - Total* X21 Ocz6661 CP % 73 V 70-130 Pass Zybers - Works	Ethylbenzene	S21-Oc26661	CP	%	75			70-130	Pass	
Spike - % Recovery February February	m&p-Xylenes	S21-Oc26661	СР	%	75			70-130	Pass	
Result	o-Xylene	S21-Oc26661	СР	%	70			70-130	Pass	
Result S21-0c26661 CP % 88	Xylenes - Total*	S21-Oc26661	СР	%	73			70-130	Pass	
Arsenic			,							
Cadmium	Heavy Metals				Result 1					
Cadmium	Arsenic	S21-Oc26661	СР	%	88			75-125	Pass	
Chromium	Cadmium	S21-Oc26661	СР		90			75-125	Pass	
Copper										
Lead										
Mercury										
Nickel										
Spike - % Recovery										
Spike - % Recovery										
Result 1		321-0020001	CF	70	00			75-125	Fass	
Acenaphthene	•				Dogult 1					
Acenaphthylene			CD.	0/				70.400	Dana	
Anthracene	•									
Benz(a)anthracene										
Benzo(a)pyrene										
Benzo(b8) fluoranthene \$21-0c26663 CP % 111					1					
Benzo(g,h.i)perylene	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									
Benzo(k)fluoranthene										
Chrysene								70-130	Pass	
Dibenz(a.h)anthracene S21-Oc26663 CP % 118	Benzo(k)fluoranthene	S21-Oc26663						70-130	Pass	
Fluoranthene	Chrysene	S21-Oc26663						70-130	Pass	
Fluorene	Dibenz(a.h)anthracene	S21-Oc26663	CP	%	118			70-130	Pass	
Indeno(1.2.3-cd)pyrene	Fluoranthene	S21-Oc26663	CP	%	120			70-130	Pass	
Naphthalene	Fluorene	S21-Oc26663	CP	%	118			70-130	Pass	
Phenanthrene	Indeno(1.2.3-cd)pyrene	S21-Oc26663	CP	%	121			70-130	Pass	
Pyrene	Naphthalene	S21-Oc26663	CP	%	113			70-130	Pass	
Test Lab Sample ID QA Source Units Result 1 Result 2 RPD Code	Phenanthrene	S21-Oc26663	CP	%	112			70-130	Pass	
Cade Code Code	Pyrene	S21-Oc26663	CP	%	120			70-130	Pass	
Result 1 Result 2 RPD	Test	Lab Sample ID	QA Source	Units	Result 1					Qualifying Code
TRH C6-C9 S21-Oc26660 CP mg/kg < 20 < 20 < 1 30% Pass Naphthalene S21-Oc26660 CP mg/kg < 0.5	Duplicate				i					
Naphthalene	Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C10 S21-Oc26660 CP mg/kg < 20 < 20 < 1 30% Pass	TRH C6-C9	S21-Oc26660	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate BTEX	Naphthalene	S21-Oc26660	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Result 1 Result 2 RPD	TRH C6-C10	S21-Oc26660	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Benzene \$21-Oc26660 CP mg/kg < 0.1 < 0.1 < 1 30% Pass Toluene \$21-Oc26660 CP mg/kg < 0.1	Duplicate									
Toluene \$21-Oc26660 CP mg/kg < 0.1 < 1 30% Pass Ethylbenzene \$21-Oc26660 CP mg/kg < 0.1	BTEX				Result 1	Result 2	RPD			
Ethylbenzene S21-Oc26660 CP mg/kg < 0.1 < 1 30% Pass m&p-Xylenes S21-Oc26660 CP mg/kg < 0.2	Benzene	S21-Oc26660	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes S21-Oc26660 CP mg/kg < 0.2 < 0.2 < 1 30% Pass o-Xylene S21-Oc26660 CP mg/kg < 0.1	Toluene	S21-Oc26660	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes S21-Oc26660 CP mg/kg < 0.2 < 0.2 < 1 30% Pass o-Xylene S21-Oc26660 CP mg/kg < 0.1			СР							
o-Xylene S21-Oc26660 CP mg/kg < 0.1 < 1 30% Pass Xylenes - Total* S21-Oc26660 CP mg/kg < 0.3 < 0.3 < 1 30% Pass Duplicate Heavy Metals Result 1 Result 2 RPD RPD Arsenic S21-Oc26660 CP mg/kg 3.4 3.4 1.0 30% Pass Cadmium S21-Oc26660 CP mg/kg < 0.4										
Xylenes - Total* S21-Oc26660 CP mg/kg < 0.3 < 1 30% Pass Duplicate Heavy Metals Result 1 Result 2 RPD RPD Arsenic S21-Oc26660 CP mg/kg 3.4 3.4 1.0 30% Pass Cadmium S21-Oc26660 CP mg/kg < 0.4	' '									
Duplicate Heavy Metals Result 1 Result 2 RPD RPD Arsenic \$21-Oc26660 CP mg/kg 3.4 1.0 30% Pass Cadmium \$21-Oc26660 CP mg/kg < 0.4										
Heavy Metals Result 1 Result 2 RPD RPD Arsenic \$21-Oc26660 CP mg/kg 3.4 3.4 1.0 30% Pass Cadmium \$21-Oc26660 CP mg/kg < 0.4		, ==: 0020000								
Arsenic S21-Oc26660 CP mg/kg 3.4 3.4 1.0 30% Pass Cadmium S21-Oc26660 CP mg/kg < 0.4	•				Result 1	Result 2	RPD			
Cadmium S21-Oc26660 CP mg/kg < 0.4 < 1 30% Pass Chromium S21-Oc26660 CP mg/kg 24 25 1.0 30% Pass	•	S21-0c26660	СР	ma/ka				30%	Pass	
Chromium S21-Oc26660 CP mg/kg 24 25 1.0 30% Pass										
LODDOR	Copper	S21-Oc26660	CP	mg/kg	8.2	10.0	1.0	30%	Pass	

Report Number: 831991-S

D									
Duplicate				Ι			I		
Heavy Metals	<u> </u>		1	Result 1	Result 2	RPD			
Lead	S21-Oc26660	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Mercury	S21-Oc26660	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S21-Oc26660	CP	mg/kg	18	20	9.0	30%	Pass	
Zinc	S21-Oc26660	CP	mg/kg	20	16	21	30%	Pass	
Duplicate					1		ı		
Polycyclic Aromatic Hydrocarbons	3		1	Result 1	Result 2	RPD			
Acenaphthene	S21-Oc26661	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-Oc26661	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-Oc26661	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-Oc26661	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-Oc26661	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-Oc26661	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-Oc26661	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-Oc26661	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-Oc26661	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-Oc26661	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-Oc26661	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S21-Oc26661	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-Oc26661	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-Oc26661	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-Oc26661	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-Oc26661	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				•					
				Result 1	Result 2	RPD		T	
% Moisture	S21-Oc26665	CP	%	12	12	5.0	30%	Pass	
Duplicate						4.0	3070		
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	S21-Oc26677	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Naphthalene	S21-Oc26677	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-Oc26677	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate			1				22.2		
BTEX				Result 1	Result 2	RPD			
Benzene	S21-Oc26677	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-Oc26677	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-Oc26677	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-Oc26677	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
o-Xylene	S21-Oc26677	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Xylenes - Total*	S21-Oc26677	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate	021 0020011	Oi	i ilig/kg	\ 0.5	V 0.0		3070	1 433	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Oc26677	СР	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S21-Oc26677	CP		< 0.4	< 0.4	<1 <1	30%	Pass	
	S21-Oc26677	CP	mg/kg	i			30%	Pass	
Conner			mg/kg	< 5	< 5	<1			
Copper	S21-Oc26677	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	S21-Oc26677	CP	mg/kg	6.7	7.1	6.0	30%	Pass	
Mercury	S21-Oc26677	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S21-Oc26677	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S21-Oc26677	CP	mg/kg	22	23	7.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	00/ 0			Result 1	Result 2	RPD	0.55	+	
TRH C10-C14	S21-Oc26678	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-Oc26678	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S21-Oc26678	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C10-C16	S21-Oc26678	CP	mg/kg	< 50	< 50	<1	30%	Pass	

Duplicate								1	
Total Recoverable Hydrocarbon				Result 1	Result 2	RPD		_	
TRH >C16-C34	S21-Oc26678	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S21-Oc26678	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				ı			T		
Polycyclic Aromatic Hydrocarbo			1	Result 1	Result 2	RPD			
Acenaphthene	S21-Oc26678	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-Oc26678	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-Oc26678	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-Oc26678	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-Oc26678	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-Oc26678	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-Oc26678	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-Oc26678	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-Oc26678	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-Oc26678	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-Oc26678	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S21-Oc26678	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-Oc26678	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-Oc26678	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-Oc26678	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-Oc26678	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-Oc26678	СР	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	S21-Oc26678	СР	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-Oc26678	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Copper	S21-Oc26678	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	S21-Oc26678	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Mercury	S21-Oc26678	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	S21-Oc26678	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	S21-Oc26678	СР	mg/kg	< 5	7.3	62	30%	Fail	Q15

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved No Appropriate sample containers have been used Nο Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

G01 The LORs have been raised due to matrix interference

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed

all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

N07

The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report. Q15

Authorised by:

N02

Andrew Black Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) Senior Analyst-Metal (NSW) John Nauven Roopesh Rangarajan Senior Analyst-Volatile (NSW)

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

WSP Australia P/L Newcastle PO Box 1162 Newcastle NSW 2300

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Richie Lamont

Report 831991-W Project name PS126618

Project ID RED BUS SERVICES BATEAU BAY

Received Date Oct 12, 2021

Client Sample ID			RB01
Sample Matrix			Water
Eurofins Sample No.			S21-Oc26680
Date Sampled			Oct 06, 2021
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons	LOIC	Offic	
TRH C6-C9	0.02	mg/L	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1
Naphthalene ^{No2}	0.01	mg/L	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1
ВТЕХ	<u>.</u>		
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	120
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.001	mg/L	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001
Anthracene	0.001	mg/L	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001
Chrysene	0.001	mg/L	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001
Fluoranthene	0.001	mg/L	< 0.001
Fluorene	0.001	mg/L	< 0.001
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001

Report Number: 831991-W

Client Sample ID			RB01
Sample Matrix			Water
Eurofins Sample No.			S21-Oc26680
Date Sampled			Oct 06, 2021
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Naphthalene	0.001	mg/L	< 0.001
Phenanthrene	0.001	mg/L	< 0.001
Pyrene	0.001	mg/L	< 0.001
Total PAH*	0.001	mg/L	< 0.001
2-Fluorobiphenyl (surr.)	1	%	54
p-Terphenyl-d14 (surr.)	1	%	101
Heavy Metals			
Arsenic (filtered)	0.001	mg/L	< 0.001
Cadmium (filtered)	0.0002	mg/L	< 0.0002
Chromium (filtered)	0.001	mg/L	< 0.001
Copper (filtered)	0.001	mg/L	< 0.001
Lead (filtered)	0.001	mg/L	< 0.001
Mercury (filtered)	0.0001	mg/L	< 0.0001
Nickel (filtered)	0.001	mg/L	< 0.001
Zinc (filtered)	0.005	mg/L	< 0.005

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Oct 13, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 13, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Oct 13, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Oct 13, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Oct 13, 2021	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8 filtered	Sydney	Oct 19, 2021	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

Report Number: 831991-W

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Perth

46-48 Banksia Road

Welshpool WA 6106

Phone: +61 8 6253 4444

ABN: 91 05 0159 898 NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

Company Name:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

WSP Australia P/L Newcastle

Address: PO Box 1162

Newcastle NSW 2300

Project Name: PS126618

Project ID:

RED BUS SERVICES BATEAU BAY

Order No.: Report #:

Phone:

Phone: +61 2 9900 8400

NATA # 1261 Site # 18217

831991 02 4929 8300

02 4929 7299 Fax:

Received: Oct 12, 2021 8:01 AM

Due: Oct 19, 2021 **Priority:** 5 Day

Contact Name: Richie Lamont

Eurofins Analytical Services Manager: Andrew Black

		Asbestos - AS4964	HOLD	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH				
	ourne Laborate									
	ney Laboratory					Х	X	Х	Х	X
	bane Laborator	•								
_	field Laboratory									
	h Laboratory - N		te # 2370							
	rnal Laboratory			1	İ					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID					
1	BH1-0.1-0.2	Oct 06, 2021		Soil	S21-Oc26648	Х		Х	Х	
2	BH1-0.4-0.5	Oct 06, 2021		Soil	S21-Oc26649			Х	Х	
3	BH1-0.9-1.0		Х							
4	BH2-0.1-0.2	S21-Oc26651		Х						
5	BH2-0.3-0.4	S21-Oc26652	Х		Х	Х				
6	BH2-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26653	Х		Х	Х	
7	BH2-4.0		Х							
8	BH3-0.1-0.2	Oct 06, 2021		Soil	S21-Oc26655	Х		Х	Х	
9	BH3-0.4-0.5	Oct 06, 2021		Soil	S21-Oc26656			Х	Х	

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

NATA # 2377 Site # 2370

Perth

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327

Oct 19, 2021

Richie Lamont

NZBN: 9429046024954

Oct 12, 2021 8:01 AM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

WSP Australia P/L Newcastle

Address: PO Box 1162

Newcastle

NSW 2300

Project Name:

PS126618

Project ID:

RED BUS SERVICES BATEAU BAY

Order No.: Report #:

831991

Phone: 02 4929 8300 02 4929 7299 Fax:

Eurofins Analytical Services Manager: Andrew Black

		Asbestos - AS4964	HOLD	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH				
Mell	oourne Laborat									
Syd	ney Laboratory	- NATA # 1261	Site # 18217			X	Х	Х	Х	Х
Bris	bane Laborator	ry - NATA # 126 ⁻	Site # 2079	4						
_		y - NATA # 1261								
		NATA # 2377 Si	te # 2370							
	ernal Laborator	1								
10	BH4-0.2-0.3	Oct 06, 2021		Soil	S21-Oc26657	X		Х	Х	
11	BH4-0.4-0.5	Oct 06, 2021		Soil	S21-Oc26658			Х	Х	
12	BH4-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26659		Х			
13	BH5-0.2-0.3	Oct 06, 2021		Soil	S21-Oc26660	Х		Х	Х	
14	BH5-0.5-0.6	Oct 06, 2021		Soil	S21-Oc26661			Х	Х	
15	BH5-0.9-1.0		Х							
16	BH6-0.2-0.3	Х		Х	Х					
17	BH3-0.9-1.0		Х							
18	BH6-0.4-0.5	Oct 06, 2021		Soil	S21-Oc26665			Х	Х	
19	BH6-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26666		Х			
20	BH7-0.2-0.3	Oct 06, 2021		Soil	S21-Oc26667	Х		Х	Х	

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898 NZBN: 9429046024954

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Phone: +61 8 6253 4444

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

Oct 19, 2021

Richie Lamont

Oct 12, 2021 8:01 AM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

WSP Australia P/L Newcastle

Address:

PO Box 1162 Newcastle NSW 2300

Project Name:

PS126618

Project ID:

RED BUS SERVICES BATEAU BAY

Order No.: Report #:

Phone:

831991 02 4929 8300

02 4929 7299 Fax:

Eurofins Analytical Services Manager: Andrew Black

		Asbestos - AS4964	HOLD	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH				
-	oourne Laborat									
		- NATA # 1261				X	X	Х	Х	X
		ry - NATA # 1261								
		y - NATA # 1261)						
		NATA # 2377 Sit	e # 2370							
	ernal Laborator			I	001.0.0000					
21	BH7-0.5-0.6	Oct 06, 2021		Soil	S21-Oc26668			Х	Х	
22	BH7-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26669		X			
23	BH8-0.1-0.2	Oct 06, 2021		Soil	S21-Oc26670	X		Х	Х	
24	BH8-0.4-0.5	Oct 06, 2021		Soil	S21-Oc26671			Х	Х	
25	BH8-0.9-1.0	Oct 06, 2021		Soil	S21-Oc26672		Х			
26	BH9-0.1-0.2	Oct 06, 2021		Soil	S21-Oc26673			Х	Х	
27	BH9-0.4-0.5		Х							
28	BH9-0.9-1.0		Х							
29	BH9-1.9-2.0	Х		Х	Х					
30	BH10-0.1-0.2	Oct 06, 2021		Soil	S21-Oc26677	Х		Х	Х	
31	BH10-0.4-0.5	Oct 06, 2021		Soil	S21-Oc26678			Х	Х	

Eurofins Environment Testing Australia Pty Ltd

Sydney

Unit F3, Building F

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 16 Mars Road Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone: +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 Site # 18217

Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

ABN: 91 05 0159 898

Perth

46-48 Banksia Road

Welshpool WA 6106

Received:

Priority:

Contact Name:

Due:

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +61 8 6253 4444 Phone: +64 9 526 45 51 NATA # 2377 Site # 2370 IANZ # 1327

NZBN: 9429046024954

Oct 12, 2021 8:01 AM

Oct 19, 2021

Richie Lamont

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450 IANZ # 1290

web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

WSP Australia P/L Newcastle

Address:

PO Box 1162 Newcastle NSW 2300

Project Name:

PS126618

Project ID:

RED BUS SERVICES BATEAU BAY

Order No.: Report #:

Phone:

831991 02 4929 8300

02 4929 7299 Fax:

Eurofins Analytical Services Manager: Andrew Black

			mple Detail			Asbestos - AS4964	HOLD	Moisture Set	Eurofins Suite B7	BTEXN and Volatile TRH
		ory - NATA # 12		4						
		- NATA # 1261				Х	Х	Х	Х	Х
		y - NATA # 126								
_		/ - NATA # 1261								
	n Laboratory - r rnal Laboratory	NATA # 2377 Sit	te # 2370							
32	BH10-0.7-0.8	Oct 06, 2021		Soil	S21-Oc26679		Х			
33	RB01	Oct 06, 2021		Water	S21-Oc26680				Х	
34	TB01	Oct 06, 2021		Soil	S21-Oc26681					X
35	QA03	Oct 06, 2021		Soil	S21-Oc26682			X	X	
36	TS01	Oct 06, 2021		Soil	S21-Oc28382					X
37	QA01	Oct 06, 2021		Soil	S21-Oc28383		Х			
38	QA02	Oct 06, 2021		Soil	S21-Oc28384		X			
39	QA02A	Oct 06, 2021		Soil	S21-Oc28385		X			
40	TS LAB	Oct 06, 2021		Soil	S21-Oc28386					Х
Test	Counts	, , , , , , , , , , , , , , , , , , ,			'	11	15	21	22	3

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ug/L: micrograms per litre

ppm: Parts per million **ppb:** Parts per billion
%: Percentage

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody

SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version
CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs...

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank	·				
Total Recoverable Hydrocarbons					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C10-C14	mg/L	< 0.05	0.05	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C10-C16	mg/L	< 0.05	0.05	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank					
Heavy Metals					
Arsenic (filtered)	mg/L	< 0.001	0.001	Pass	
Cadmium (filtered)	mg/L	< 0.0002	0.0002	Pass	
Chromium (filtered)	mg/L	< 0.001	0.001	Pass	
Copper (filtered)	mg/L	< 0.001	0.001	Pass	
Lead (filtered)	mg/L	< 0.001	0.001	Pass	
Mercury (filtered)	mg/L	< 0.0001	0.0001	Pass	
Nickel (filtered)	mg/L	< 0.001	0.001	Pass	
Zinc (filtered)	mg/L	< 0.005	0.005	Pass	
LCS - % Recovery	, , ,				
Total Recoverable Hydrocarbons					
TRH C6-C9	%	85	70-130	Pass	
TRH C10-C14	%	128	70-130	Pass	
Naphthalene	%	94	70-130	Pass	

Report Number: 831991-W

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
TRH C6-C10			%	84		70-130	Pass	
TRH >C10-C16			%	125		70-130	Pass	
LCS - % Recovery								
BTEX								
Benzene			%	76		70-130	Pass	
Toluene			%	93		70-130	Pass	
Ethylbenzene			%	93		70-130	Pass	
m&p-Xylenes			%	92		70-130	Pass	
o-Xylene			%	94		70-130	Pass	
Xylenes - Total*			%	93		70-130	Pass	
LCS - % Recovery								
Polycyclic Aromatic Hydrocarbo	ns							
Acenaphthene			%	110		70-130	Pass	
Acenaphthylene			%	114		70-130	Pass	
Anthracene			%	125		70-130	Pass	
Benz(a)anthracene			%	119		70-130	Pass	
Benzo(a)pyrene			%	128		70-130	Pass	
Benzo(g,h.i)perylene			%	127		70-130	Pass	
Benzo(k)fluoranthene			%	121		70-130	Pass	
				121				
Chrysene			%			70-130	Pass	
Dibenz(a.h)anthracene			%	124		70-130	Pass	
Fluoranthene			%	126		70-130	Pass	
Fluorene			%	102		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	125		70-130	Pass	
Naphthalene			%	97		70-130	Pass	
Phenanthrene			%	108		70-130	Pass	
Pyrene			%	125		70-130	Pass	
LCS - % Recovery				T	T I	I	I	
Heavy Metals								
Arsenic (filtered)			%	91		80-120	Pass	
Cadmium (filtered)			%	99		80-120	Pass	
Chromium (filtered)			%	103		80-120	Pass	
Copper (filtered)			%	105		80-120	Pass	
Lead (filtered)			%	102		80-120	Pass	
Mercury (filtered)			%	109		80-120	Pass	
Nickel (filtered)			%	104		80-120	Pass	
Zinc (filtered)			%	100		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons				Result 1				
TRH C6-C9	S21-Oc26688	NCP	%	72		70-130	Pass	
TRH C10-C14	S21-Oc26696	NCP	%	118		70-130	Pass	
Naphthalene	S21-Oc26688	NCP	%	96		70-130	Pass	
TRH C6-C10	S21-Oc26688	NCP	%	73		70-130	Pass	
TRH >C10-C16	S21-Oc26696	NCP	%	119		70-130	Pass	
Spike - % Recovery								
ВТЕХ				Result 1				
Benzene	S21-Oc26688	NCP	%	78		70-130	Pass	
Toluene	S21-Oc26688	NCP	%	94		70-130	Pass	
Ethylbenzene	S21-Oc26688	NCP	%	92		70-130	Pass	
m&p-Xylenes	S21-Oc26688	NCP	%	91		70-130	Pass	
				94		70-130	Pass	
o-Xylene	S21-Oc26688	INCP	%	1 94	1	10-190	l ass	
o-Xylene Xylenes - Total*	S21-Oc26688 S21-Oc26688	NCP NCP	% %	92		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Heavy Metals				Result 1					
Arsenic (filtered)	W21-Oc26125	NCP	%	86			75-125	Pass	
Cadmium (filtered)	W21-Oc26125	NCP	%	90			75-125	Pass	
Chromium (filtered)	W21-Oc26125	NCP	%	92			75-125	Pass	
Copper (filtered)	W21-Oc26125	NCP	%	91			75-125	Pass	
Lead (filtered)	W21-Oc26125	NCP	%	90			75-125	Pass	
Mercury (filtered)	W21-Oc26125	NCP	%	96			75-125	Pass	
Nickel (filtered)	W21-Oc26125	NCP	%	93			75-125	Pass	
Zinc (filtered)	W21-Oc26125	NCP	%	92			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate		100000							
Total Recoverable Hydrocarbo	ons			Result 1	Result 2	RPD			
TRH C6-C9	S21-Oc26697	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
TRH C10-C14	W21-Oc26119	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	W21-Oc26119	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	W21-Oc26119	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Naphthalene	S21-Oc26697	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S21-Oc26697	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH >C10-C16	W21-Oc26119	NCP	mg/L	< 0.02	< 0.02	<u><1</u>	30%	Pass	
				1					
TRH >C16-C34 TRH >C34-C40	W21-Oc26119	NCP NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
	W21-Oc26119	I NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				D 11.4		DDD			
BTEX				Result 1	Result 2	RPD		_	
Benzene	S21-Oc26697	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S21-Oc26697	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S21-Oc26697	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S21-Oc26697	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S21-Oc26697	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total*	S21-Oc26697	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate					, , ,				
Polycyclic Aromatic Hydrocar	bons			Result 1	Result 2	RPD			
Acenaphthene	S21-Oc23431	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Acenaphthylene	S21-Oc23431	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Anthracene	S21-Oc23431	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benz(a)anthracene	S21-Oc23431	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(a)pyrene	S21-Oc23431	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-Oc23431	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-Oc23431	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Benzo(k)fluoranthene	S21-Oc23431	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Chrysene	S21-Oc23431	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-Oc23431	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluoranthene	S21-Oc23431	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Fluorene	S21-Oc23431	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-Oc23431	NCP	mg/L	< 0.001	< 0.001	<1 <1	30%	Pass	
				1	1				
Naphthalene	S21-Oc23431	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Phenanthrene	S21-Oc23431	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Pyrene	S21-Oc23431	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Duplicate				Ι			T		
Heavy Metals	1 -	1 1		Result 1	Result 2	RPD		_	
Arsenic (filtered)	S21-Oc26704	NCP	mg/L	0.006	0.006	2.0	30%	Pass	
Cadmium (filtered)	S21-Oc26704	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium (filtered)	S21-Oc26704	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Copper (filtered)	S21-Oc26704	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead (filtered)	S21-Oc26704	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	

Duplicate											
Heavy Metals Result 1 Result 2 RPD											
Mercury (filtered)	S21-Oc26704	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass			
Nickel (filtered)	S21-Oc26704	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass			
Zinc (filtered)	S21-Oc26704	NCP	mg/L	0.012	0.012	2.0	30%	Pass			

Report Number: 831991-W

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved No Appropriate sample containers have been used Nο Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised by:

N02

Andrew Black Analytical Services Manager Andrew Sullivan Senior Analyst-Organic (NSW) John Nguyen Senior Analyst-Metal (NSW) Roopesh Rangarajan Senior Analyst-Volatile (NSW)

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 831991-W

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2137105** Page : 1 of 8

Client : WSP Australia Pty Ltd Laboratory : Environmental Division Sydney

Contact : RICHIE LAMONT Telephone : +61 2 8784 8555
Project : PS126618 Red bus services Bateau Bay Date Samples Received : 14-Oct-2021

 Site
 : -- Issue Date
 : 21-Oct-2021

 Sampler
 : -- No. of samples received
 : 2

Order number : 30072355 No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Laboratory Control outliers occur.
- Duplicate outliers exist please see following pages for full details.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 8 Work Order : ES2137105

Client : WSP Australia Pty Ltd

Project PS126618 Red bus services Bateau Bay

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Duplicate (DUP) RPDs							
EG005(ED093)T: Total Metals by ICP-AES	ES2137069001	Anonymous	Zinc	7440-66-6	74.0 %	0% - 20%	RPD exceeds LOR based limits

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EG035F: Dissolved Mercury by FIMS	ES2137107001	Anonymous	Mercury	7439-97-6	44.8 %	70.0-130%	Recovery less than lower data quality
							objective

Outliers: Analysis Holding Time Compliance

Matrix: WATER

Maurx. WATER							
Method	E	Analysis					
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	nalysed Due for analysis		
			overdue			Days overdue	
EP080/071: Total Petroleum Hydrocarbons							
Amber Glass Bottle - Unpreserved							
QA01a	15-Oct-2021	14-Oct-2021	1				
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Amber Glass Bottle - Unpreserved							
QA01a	15-Oct-2021	14-Oct-2021	1				

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Count Rate (%) Qual		e (%)	Quality Control Specification	
Method	QC Regular Actual Expected		Expected		
Laboratory Duplicates (DUP)					
TRH - Semivolatile Fraction	0	5	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
TRH - Semivolatile Fraction	0	5	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **SOIL** Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Method Section 1997 The	Sample Date	E)	traction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	

Page : 3 of 8
Work Order : ES2137105

Client : WSP Australia Pty Ltd

Project : PS126618 Red bus services Bateau Bay

Matrix: SOIL				Evaluation	: x = Holding time	breach ; ✓ = Withi	in holding time
Method Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055) QA03a	06-Oct-2021				18-Oct-2021	20-Oct-2021	1
EG005(ED093)T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T) QA03a	06-Oct-2021	18-Oct-2021	04-Apr-2022	✓	19-Oct-2021	04-Apr-2022	✓
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T) QA03a	06-Oct-2021	18-Oct-2021	03-Nov-2021	✓	19-Oct-2021	03-Nov-2021	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM)) QA03a	06-Oct-2021	18-Oct-2021	20-Oct-2021	✓	19-Oct-2021	27-Nov-2021	✓
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP071) QA03a	06-Oct-2021	18-Oct-2021	20-Oct-2021	✓	19-Oct-2021	27-Nov-2021	✓
Soil Glass Jar - Unpreserved (EP080) QA03a	06-Oct-2021	18-Oct-2021	20-Oct-2021	✓	20-Oct-2021	20-Oct-2021	✓
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP071) QA03a	06-Oct-2021	18-Oct-2021	20-Oct-2021	1	19-Oct-2021	27-Nov-2021	✓
Soil Glass Jar - Unpreserved (EP080) QA03a	06-Oct-2021	18-Oct-2021	20-Oct-2021	✓	20-Oct-2021	20-Oct-2021	✓
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080) QA03a	06-Oct-2021	18-Oct-2021	20-Oct-2021	✓	20-Oct-2021	20-Oct-2021	✓
Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	in holding time
Method Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) QA01a	07-Oct-2021				19-Oct-2021	05-Apr-2022	✓
EG035F: Dissolved Mercury by FIMS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) QA01a	07-Oct-2021				20-Oct-2021	04-Nov-2021	✓
EP074A: Monocyclic Aromatic Hydrocarbons							
Clear glass VOC vial - HCl (EP074) QA01a	07-Oct-2021	18-Oct-2021	21-Oct-2021	✓	18-Oct-2021	21-Oct-2021	✓
EP074B: Oxygenated Compounds							
Clear glass VOC vial - HCl (EP074) QA01a	07-Oct-2021	18-Oct-2021	21-Oct-2021	✓	18-Oct-2021	21-Oct-2021	✓

Page : 4 of 8 Work Order : ES2137105

Client : WSP Australia Pty Ltd

Project PS126618 Red bus services Bateau Bay

Matrix: WATER				Evaluation	i: × = Holding time	breach ; ✓ = Withi	n holding tim
Method	Sample Date	E	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP074C: Sulfonated Compounds							
Clear glass VOC vial - HCI (EP074)			04.0.4.0004			04.0.4.0004	
QA01a	07-Oct-2021	18-Oct-2021	21-Oct-2021	✓	18-Oct-2021	21-Oct-2021	✓
EP074D: Fumigants	<u> </u>	<u> </u>					
Clear glass VOC vial - HCl (EP074) QA01a	07-Oct-2021	18-Oct-2021	21-Oct-2021	✓	18-Oct-2021	21-Oct-2021	✓
EP074E: Halogenated Aliphatic Compounds							
Clear glass VOC vial - HCI (EP074) QA01a	07-Oct-2021	18-Oct-2021	21-Oct-2021	1	18-Oct-2021	21-Oct-2021	✓
EP074F: Halogenated Aromatic Compounds							
Clear glass VOC vial - HCI (EP074) QA01a	07-Oct-2021	18-Oct-2021	21-Oct-2021	✓	18-Oct-2021	21-Oct-2021	✓
EP074G: Trihalomethanes							
Clear glass VOC vial - HCl (EP074) QA01a	07-Oct-2021	18-Oct-2021	21-Oct-2021	✓	18-Oct-2021	21-Oct-2021	✓
EP080/071: Total Petroleum Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP071) QA01a	07-Oct-2021	15-Oct-2021	14-Oct-2021	*	19-Oct-2021	24-Nov-2021	✓
Clear glass VOC vial - HCl (EP080) QA01a	07-Oct-2021	18-Oct-2021	21-Oct-2021	✓	18-Oct-2021	21-Oct-2021	✓
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071) QA01a	07-Oct-2021	15-Oct-2021	14-Oct-2021	Ŀ	19-Oct-2021	24-Nov-2021	✓
Clear glass VOC vial - HCl (EP080) QA01a	07-Oct-2021	18-Oct-2021	21-Oct-2021	1	18-Oct-2021	21-Oct-2021	·
EP080: BTEXN							
Clear glass VOC vial - HCI (EP080) QA01a	07-Oct-2021	18-Oct-2021	21-Oct-2021	1	18-Oct-2021	21-Oct-2021	

Page : 5 of 8
Work Order : ES2137105

Client : WSP Australia Pty Ltd

Project : PS126618 Red bus services Bateau Bay

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

the expected rate. A listing of breaches is provided in	the Summary of Outliers.						
Matrix: SOIL				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	10	10.00	5.00	√	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Matrix: WATER

Evaluation: * = Quality Control frequency not within specification; * = Quality Control frequency within specification.

Quality Control Sample Type		Co	ount	Rate (%)			Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Dissolved Mercury by FIMS	EG035F	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	5	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Dissolved Mercury by FIMS	EG035F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 6 of 8
Work Order : ES2137105

Client : WSP Australia Pty Ltd

Project PS126618 Red bus services Bateau Bay

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Control Samples (LCS) - Continued							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Dissolved Mercury by FIMS	EG035F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Dissolved Mercury by FIMS	EG035F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	5	0.00	5.00	.te	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 7 of 8
Work Order : ES2137105

Client : WSP Australia Pty Ltd

Project : PS126618 Red bus services Bateau Bay

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenois (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)
Volatile Organic Compounds	EP074	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)

Page : 8 of 8 Work Order : ES2137105

Client : WSP Australia Pty Ltd

Project PS126618 Red bus services Bateau Bay

Analytical Methods	Method	Matrix	Method Descriptions
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2137105** Page : 1 of 8

Client : WSP Australia Pty Ltd Laboratory : Environmental Division Sydney

Contact : RICHIE LAMONT Telephone : +61 2 8784 8555
Project : PS126618 Red bus services Bateau Bay Date Samples Received : 14-Oct-2021

 Site
 : -- Issue Date
 : 21-Oct-2021

 Sampler
 : -- No. of samples received
 : 2

Order number : 30072355 No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Laboratory Control outliers occur.
- Duplicate outliers exist please see following pages for full details.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 8 Work Order : ES2137105

Client : WSP Australia Pty Ltd

Project PS126618 Red bus services Bateau Bay

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Duplicate (DUP) RPDs							
EG005(ED093)T: Total Metals by ICP-AES	ES2137069001	Anonymous	Zinc	7440-66-6	74.0 %	0% - 20%	RPD exceeds LOR based limits

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EG035F: Dissolved Mercury by FIMS	ES2137107001	Anonymous	Mercury	7439-97-6	44.8 %	70.0-130%	Recovery less than lower data quality
							objective

Outliers: Analysis Holding Time Compliance

Matrix: WATER

Wallix. WATER						
Method	E		Analysis			
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days overdue	Date analysed	Due for analysis	Days overdue
EP080/071: Total Petroleum Hydrocarbons						
Amber Glass Bottle - Unpreserved						
QA01a	15-Oct-2021	14-Oct-2021	1			
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions						
Amber Glass Bottle - Unpreserved						
QA01a	15-Oct-2021	14-Oct-2021	1			

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Count		Rate	€ (%)	Quality Control Specification
Method	QC	Regular	Actual Expected		
Laboratory Duplicates (DUP)					
TRH - Semivolatile Fraction	0	5	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
TRH - Semivolatile Fraction	0	5	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **SOIL** Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Method	Sample Date	E	traction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation

Page : 3 of 8
Work Order : ES2137105

Client : WSP Australia Pty Ltd

Project : PS126618 Red bus services Bateau Bay

Matrix: SOIL				Evaluation	ı: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	Ex	xtraction / Preparation				
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055)							
QA03a	06-Oct-2021				18-Oct-2021	20-Oct-2021	✓
EG005(ED093)T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T)	06-Oct-2021	18-Oct-2021	04-Apr-2022		19-Oct-2021	04-Apr-2022	
QA03a	06-001-2021	10-001-2021	04-Api-2022	✓	19-001-2021	04-Apr-2022	√
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T) QA03a	06-Oct-2021	18-Oct-2021	03-Nov-2021	1	19-Oct-2021	03-Nov-2021	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons			33 1131 2321	<u>*</u>	10 000 000	331131 2321	<u> </u>
Soil Glass Jar - Unpreserved (EP075(SIM))		<u> </u>					
QA03a	06-Oct-2021	18-Oct-2021	20-Oct-2021	✓	19-Oct-2021	27-Nov-2021	✓
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP071)							
QA03a	06-Oct-2021	18-Oct-2021	20-Oct-2021	✓	19-Oct-2021	27-Nov-2021	✓
Soil Glass Jar - Unpreserved (EP080)	00.0-4.0004	40.0-4.0004	20-Oct-2021		00 0-4 0004	20-Oct-2021	
QA03a	06-Oct-2021	18-Oct-2021	20-OCI-2021	✓	20-Oct-2021	20-001-2021	√
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							I
Soil Glass Jar - Unpreserved (EP071) QA03a	06-Oct-2021	18-Oct-2021	20-Oct-2021	1	19-Oct-2021	27-Nov-2021	✓
Soil Glass Jar - Unpreserved (EP080)	00 000 202	10 001 202					V
QA03a	06-Oct-2021	18-Oct-2021	20-Oct-2021	✓	20-Oct-2021	20-Oct-2021	✓
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080)							
QA03a	06-Oct-2021	18-Oct-2021	20-Oct-2021	✓	20-Oct-2021	20-Oct-2021	✓
Matrix: WATER				Evaluation	ı: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	E>	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F)							
QA01a	07-Oct-2021				19-Oct-2021	05-Apr-2022	✓
EG035F: Dissolved Mercury by FIMS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F)	07.0.1.0051				00.0.1.005	04 Nov. 0004	
QA01a	07-Oct-2021				20-Oct-2021	04-Nov-2021	✓
EP074A: Monocyclic Aromatic Hydrocarbons							
Clear glass VOC vial - HCI (EP074) QA01a	07-Oct-2021	18-Oct-2021	21-Oct-2021	✓	18-Oct-2021	21-Oct-2021	,
	07-001-2021	10-001-2021	21-001-2021	·	10-001-2021	Z 1-OUL-ZUZ I	√
EP074B: Oxygenated Compounds							
Clear glass VOC vial - HCI (EP074)	1						

Page : 4 of 8 Work Order : ES2137105

Client : WSP Australia Pty Ltd

Project PS126618 Red bus services Bateau Bay

Matrix: WATER				Evaluation	n: 🗴 = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	E	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP074C: Sulfonated Compounds							
Clear glass VOC vial - HCl (EP074)			04.0.4.0004	_		04.0.4.0004	
QA01a	07-Oct-2021	18-Oct-2021	21-Oct-2021	✓	18-Oct-2021	21-Oct-2021	✓
EP074D: Fumigants		<u> </u>					
Clear glass VOC vial - HCl (EP074) QA01a	07-Oct-2021	18-Oct-2021	21-Oct-2021	✓	18-Oct-2021	21-Oct-2021	✓
EP074E: Halogenated Aliphatic Compounds							
Clear glass VOC vial - HCI (EP074) QA01a	07-Oct-2021	18-Oct-2021	21-Oct-2021	✓	18-Oct-2021	21-Oct-2021	✓
EP074F: Halogenated Aromatic Compounds							
Clear glass VOC vial - HCI (EP074) QA01a	07-Oct-2021	18-Oct-2021	21-Oct-2021	✓	18-Oct-2021	21-Oct-2021	✓
EP074G: Trihalomethanes							
Clear glass VOC vial - HCl (EP074) QA01a	07-Oct-2021	18-Oct-2021	21-Oct-2021	✓	18-Oct-2021	21-Oct-2021	✓
EP080/071: Total Petroleum Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP071) QA01a	07-Oct-2021	15-Oct-2021	14-Oct-2021	*	19-Oct-2021	24-Nov-2021	✓
Clear glass VOC vial - HCl (EP080) QA01a	07-Oct-2021	18-Oct-2021	21-Oct-2021	✓	18-Oct-2021	21-Oct-2021	√
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071) QA01a	07-Oct-2021	15-Oct-2021	14-Oct-2021	¥	19-Oct-2021	24-Nov-2021	1
Clear glass VOC vial - HCl (EP080) QA01a	07-Oct-2021	18-Oct-2021	21-Oct-2021	1	18-Oct-2021	21-Oct-2021	·
EP080: BTEXN							
Clear glass VOC vial - HCI (EP080) QA01a	07-Oct-2021	18-Oct-2021	21-Oct-2021	1	18-Oct-2021	21-Oct-2021	1

Page : 5 of 8
Work Order : ES2137105

Client : WSP Australia Pty Ltd

Project : PS126618 Red bus services Bateau Bay

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type			ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC OC	Regular	Actual	Expected	Evaluation	quality control opecimentalism
Laboratory Duplicates (DUP)							
Moisture Content	EA055	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	4	25.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	12	8.33	5.00	1	NEPM 2013 B3 & ALS QC Standard

Matrix: WATER

Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Dissolved Mercury by FIMS	EG035F	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	5	0.00	10.00	3c	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Dissolved Mercury by FIMS	EG035F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 6 of 8
Work Order : ES2137105

Client : WSP Australia Pty Ltd

Project PS126618 Red bus services Bateau Bay

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Control Samples (LCS) - Continued							
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Dissolved Mercury by FIMS	EG035F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	5	20.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Dissolved Mercury by FIMS	EG035F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	5	0.00	5.00	.te	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Volatile Organic Compounds	EP074	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 7 of 8
Work Order : ES2137105

Client : WSP Australia Pty Ltd

Project : PS126618 Red bus services Bateau Bay

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenois (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)
Volatile Organic Compounds	EP074	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)

Page : 8 of 8 Work Order : ES2137105

Client : WSP Australia Pty Ltd

Project PS126618 Red bus services Bateau Bay

Analytical Methods	Method	Matrix	Method Descriptions
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.

	ļ	Labo	12	===	5	φ.	00	7	6	C)1	4	w	2		ī	ş		T						_
	riamity day City	Laboratory Use Only						-								(Time / Date)	(Signature)	Refinquished by	Special Direction	Contact Phone Ne	Contact Name	Address	Company	
	Received By	Received By	BH4-0.9-1.0	BH4-0.4-0.5	BH4-0.2-0.3	BH3-0.4-0.5	BH3-0.1-0.2	BH2-4.0	BH2-0.9-1.0	BH2-0.3-0.4	BH2-0.1-0.2	BH1-0.9-1.0	BH1-0.4-0.5	BH1-0.1-0.2	Cilent Sample ID	10 . 00	JW	Jessica Watson	Please analyse for asbestos out of the jar	420200359	Jessica Watson	Level 3/51-55 Bolton St, Newcastle NSW 2300	WSP Australia	ABN 30 U05 U85 621
		عام کارد کار														11/10/21		On	se for asbes		Ö	Bolton St, I	22.	5085 521
		Cliffen	6/10/21	6/10/21	6/10/21	6/10/21	6/10/21	6/10/21	6/10/21	6/10/21	6/10/21	6/10/21	6/10/21	6/10/21	- Date				tos out of th			Newcastle N		Ì
			soil	soil	soil	Soil	soil	soil	soil	soil	soji	soil	soii	soil	Matrix		Nate: Where	metals are se	Analysis quested, please spec				+	-
0 0	SYD BNB	(SYD) BNI		×	×	×	×		×	×			×	×					C. PAHs, Metals		r "Filtered")	Quote Na	Purchase Order	danc
Submission of samp	MEL	(SYD) BNE MEL PER ADL NEW DAR			×		×		×	×				×			As	pestos (pr	esence/absence	e)				Ofwiely Con-
Sith a	ER I ADI	ER ADL														·	- <u>-</u>	F	AHs					E : EnviroSampleNSW@eurofins com.au
NEW DAR	NEW - DAD	NEW DAR																	(8 metals)	·				NSW@eurolins.com
Date		Date															Ast	estos (pre	sence/absence	a) ————	-			.84
6		8																						
//_		10/2				relaphone · -			ES	Sydney Work Order Reference	Environ		(0	r	Y						Project №	Project Manager	Brisbane Lab
Time	!	Time				61-2-8784 8555			2137	Order Ref	mental		+									PS126618	Richi	
	+-	- BS				566			7105	erence	Division						·					6618	Richie Lamont	E : EnviroSempleQLD@eurofins.com.au
<u> </u>	k	ج ان ع									-							 .						geurafins.com.au
Signature	Ognative	Signatura																						
	+_		×					×			×	×				1Ł Plast		ON H	OLD				- ·- <u>-</u> _	
	of Children	<u> </u>														250mL Pfa 125mL Pla	stic		Turn Around Requirements	į	Email for Results	Electronic Results Format	Project Name	Me
																200mL Amber 40mLvia 25mL Amber	1	Containers						Melbourne Lab
		+	×	×	×	×	×	×	*	×	×	×	*	×		Jar	and St		☐ 5 DAY (Std.)	☐ 1 DAY*	ichie Lan	excel and Esdat	Red bus si	-
Report Ne	Temperature									Ì					Sample Com	Postal	Hand Delivered	Meth	Other (D NAGE	Richie Lamont Richie.Lamont@wsp.com	Esdat	Red bus services Bateau Bay	P +61 3 8564 5000 F +81 3 8564 5090 E : EnviroSampleVic@eurofins.com.au
		_													Sample Comments / DG Hazard Warning		elivered	Method of Shipment			ie.Lamon		ateau Bay	1 3 8564 5090 om,au
	15,45	3									1				lazard Warnii			pment	* Surcharges apply	3044	t@wsp.cc		-	

Part	- Contract of the Contract of					ha domaid as asset	to the inhoratory will	Suhmission of samples								į
Project Proj			Signature		Time	_/_/_	Date	ER ADL NEW DAR	VE MEL PI	SYD B					,	
Company WSP Assistants Company of the company	Temperature		Signature		Time	14/16/21	Date	ER ADL NEW DAR	NE MEL P	<u>.</u>	3		-		aboratory Use	
Advanced by MSP Autoritation										×	soil	6/10/21	0.4-0.5	BE BE	2	12
Company WSP Autorials									×	×	soil	6/10/21	0.1-0.2	B78-] =
Production Visp Australia Production			×								soil	6/10/21	0.9-1.0	ВН7-		10
Contains										×	soil	6/10/21	0.5-0.6	8H7-		1 49
December Popular Pop									×	×	soil	6/10/21	0.2-0.3	BH7.	Co	т —
Address Abstract Andrews And			×								soil	6/10/21	0.9-1.0	B16	7	1
Company WSP Australia Property Prope										×	soil	6/10/21	-0.4-0.5	BH6	G)	
Content Company WSP Australia Particles Part			×								soil	6/10/21	-0.9-1.0	BH3	Çi	
									×	×	soil	6/10/21	+0.2-0.3	BH6	4	
Company WSP Australia Politicolom Po			×								soil	6/10/21	¥0.9-1.0	848	ω	,
Company WSP Australia Purchase Order Purchase Purchase Order Purchase Purchase Order Purchase Purcha										×	so <u>i</u>	6/10/21	5-0.5-0.6	뭂	2	т
Company WSP Australia Political Po									×	×	soii	6/10/21	5-0.2-0.3	BE.		
Sylley Lab Foliance Police Poli		20									Matrix	Date	Sample ID	Clien	N ₆	
WSP Australia Purchase Coder Sydney Lab Expressionation St. Newcastle NSW Purchase Coder Richie Lamont Project Manager Richie	Jar	250ml Pl 125ml Pl 00ml Ambe								(1)		10/21	8		(Time / Date	
Appropriessors WSP Australia Purchasse Order Purchasse		astic astic ar Glass							As		·		JW	 	(Signature)	
WSP Australia Purchase Order	☑ Couri	Ovinding	ON I						bestos (pre				sica Watson		Relinquished	
WSP Australia Purchase Order Purchase Order Purchase Order Purchase Order Purchase Order Purchase Order Project New Castle NSW Purchase Order Project New Castle NSW Purchase Order Project New Castle NSW Purchase Order Project New Poject New P	5 DAY (Std.) Other (l	(OLD						esence/absenc		Analysis	sbestos from th	ase anayise for a		Special Direct	
ABMY WSP Australia Purchase Order Purchase Order Purchase Order Purchase Order Purchase Order ABMON Distance and a project Meanager Project New PSP 2300 Project New PSP 26618 Project New PSP 26618 Project New PSP 26618 Project New PSP 26618 Electronic Results Formal Electronic Results Formal Electronic Results	□ 2 DAY*			·					;e)				200359	_	Contact Phon	
ABI SO 005 095 537) WSP Australia Purchase Order Purchase Order Purchase Order Purchase Order Project Manager Project Name Project Name Project Name Project Name Project Name Fromat	Richie Lamont Richie.Lamon									or "Filtered")			sica Watson		Contact Nar	
ABN 39 005 085 527 Sydney Lab E: EnviroSampleACW@surdina.com au Melbourne L Melbourne L Project Manager Richie Lamont Project Name	excel and Esdat				PS12661	Project Ne				urofins mgt Quote Ne		ո St, Newcastle I	/el 3/51-55 Boltor)()		Address	
ABY 50 005 005 221 Sydney Lab E: EnviroSample/SWigherdrins com au Brisbane Lab E: EnviroSample/SUBjeurdrins com au Melbourne Lab	Red bus services Bateau Bay			amont	Richie La	Project Manager				ırchase Orde	7		P Australia	-	Company	
F. #12990 840	ngt - ∠naigson i own close. Casagin, VC 3185 P : +61 3 8564 5000 F : +61 3 8564 5080 Lab E : EnuroSempleVis@eurofins com.au	Melbourne L		73902 4500 oSampleQLD@eurofins.com au		Brisbar		: +61 2 9900 8400 :: EnviroSampleNSW@eurofins.com.au		Sydne]		ABN 50 005 085 521			

	Laborat	12	3	10	ø	8	7	.00	55	4	ω	2		놂	(Tim	(Sign	Relin	Speci	Conta	Con			
	Laboratory Use Only	3													(Time / Date)	(Signature)	Relinquished by	Special Direction	Contact Phone Ne	Contact Name	Address	Company	
Received By	Received By	QA03a	QA03	TB01	RB01	ВН10-0.7-0.8	ВН10-0.4-0.5	ВН10-0.1-0.2	ВН9-1.9-2.0	вн9-0.9-1.0	BH9-0.4-0.5	BH9-0.1-0.2	BH8-0.9-1.0	Client Sample ID	10 : 00	WL	Jessica Watson	Please analyse asbestos from the jar	420200359	Jessica Watson	Level 3/51-55 Bolton St, Newcastle NSW 2300	WSP Australia	
	Jacob	-													11/10/21		on	e asbestos :		9	Bolton St, A		•
	Chris	6/10/21	6/10/21	6/10/21	6/10/21	6/10/21	6/10/21	6/10/21	6/10/21	6/10/21	6/10/21	6/10/21	6/10/21	Date				from the jar			lewcastie No		
		SOİ	soil	soil	water	soil	soil	soil	soil	soil	soil	soil	soil	Matrix	(N	lote: Where	metals are req	Analysis Jested, please spo	ecify "Total"	or "Fillered")		-	
SYD BNE	SYD DANS	×	×	×	×		×	×	×			×						X, PAHs, Me			Quote No	Purchase Order	
MEL PE	MEL PE						:	×	×							Asb	estos (pre	sence/absen	ce)				-
SYD BNE MEL PER ADL NEW DAR	SYD BINE MEL PER ADL NEW DAR																						
R Date	R Date																						
//	14/10/21																				Project Ne	Project Manager	
Time	Time																				PS126618		
1.	<u>16</u> :30																				6618	Richie Lamont	
Signature	Signature					×				×	×		_										
	9-				-								×		1L Plast		ON H		=		Efe	-	
														20	250ml, Pla 125ml, Pla 00mL Amber	estic	Cont	Requirements	um Around	Email for Results	Electronic Results Format	Project Name	
														12	40mLvia 25mL Amber Jar		Containers	5 DAY (Std.)	□ 1 DAY*	Richie I		Red bu	
Time Signature Report Ne	Temperature	Please forward to ALS												Sample Comr	Postal	Hand Delivered	Meth	_	□ _{2 DAY*}	Richie Lamont Richie.Lamont@wsp.con	excel and Esdat	Red bus services Bateau Bay	
	15,400	and to ALS												Sample Comments / DG Hazard Warning		livered	Method of Shipment		□зрау*	e.Lamont@v		teau Bay	į

DL NEW Date/_ Time Signature Signature Report Ne
Time 16:30
,
PS126618
Richie Lamont
Brisbane Lab E. EnriroSample & D@eurofins.com.au

12 = ಕ Laboratory Use Only ᇹ Relinquished by Special Direction Contact Phone No (Time / Date) (Signature) Contact Name Company Address Jessica Watson Client Sample ID 420200359 Jessica Watsor Level 3/51-55 Bolton St, Newcastle NSW 2300 QA01a WSP Australia Received By 5 Received By QA Q MW33 RB02 MW32 MW26 MW23 MW21 MW20 ᅙ ۸ĸ 8 Jack Citty 11/10/21 7/10/21 7/10/21 8/10/21 8/10/21 8/10/21 8/10/21 8/10/21 8/10/21 8/10/21 8/10/21 7/10/21 8/10/21 Date water water water water water water water water water water water water Matrix Analysis Eurofins | mgt Quate Ne Purchase Order (SYD) | BNE | MEL | PER | ADL | NEW | DAR SYD | BNE | MEL | PER | ADL | NEW | DAR × × X × × × × × × X B7: TRH, BTEX, VOCs, Metals X Metals (8 metals) × TRH (C6-C10) Date Date 1/1/ 2 Project Manager 16/2 Project No Time Time Richie Lamont PS126618 Unit 1, 21 Smallwood Place, Murame, QLD 4172
P: +617 3902 4600
E: EnviroSampleQLD@eurofins.com.au 16 30 Signature ON HOLD 1L Plastic Electronic Results Turn Around Requirements Email for Results Project Name 250mL Plastic ☐ Eurofins | mgt Melbourne Lab 125mL Plastic 200mL Amber Glass 40mLvial S DAY (Std.) ☐ 1 DAY* 125mL Amber Glass Richie Lamont Richie.Lamont@wsp.com excel and Esdat Red bus services Bateau Bay Jar 2 Kingston Town Close, Oakleigh, V/C 3166 P:+613 8564 5000 F:+613 8564 5090 E: EnviroSampleVic@eurolins.com.au Postal Courier (# Sample Comments / DG Hazard Warning □2 DAY* ☐ Hand Delivered Other (Please forward to ALS Report Ne Method of Shipment 18,400 □ 3 DAY* Surcharges apply

Athanuisa & constrained most Standard Tarms and Conditions

CHAIN OF CUSTODY RECORD

☑Eurofins | mgt Sydney Lab

Unit F3 Building F. 16 Mers Road. Lane Care West, NSW 2068 P: +61 2 9800 8400 E: EnviroSempleNSW@eurofins.com.eu

☐ Eurofins | mgt Brisbane Lab

	Labo	72	==	8	ω	8	7	တ	СЯ	4	ω	N		景			Z.	& 	်			T .	٦ .
	Laboratory Use Only														(Time / Date)	(Signature)	Relinquished by	Special Direction	Contact Phone No	Contact Name	Address	Company	2
Received By	Received By										QA01	QA02a	QA02	Client Sample ID	10 : 00	WL	Jessica Watson		420200359	Jessica Watson	Level 3/51-5 2300	WSP Australia	ABN 90 105 695 527
	Jach	1 .													11/10/21		son			tson .	55 Bolton St		100 1 O D
	Chiten	*									6/10/21	6/10/21	6/10/21	Date							Level 3/51-55 Bolton St, Newcastle NSW 2300		י אהניטא
											SOII	soil	soil	Matrix	(1	lote: Where	metals are r	Analysis equested, please spe	reify "Total" «	or "Fillered" }	· —	 	
SYD BNE MEL PER ADL NEW DAR	SYD BNE MEL PER ADL NEW DAR															B7	TRH, BT	EX, PAHs, met	als		Eurofins mgt Quote N₂	Purchase Order	Sydney Lab
MEL PER	MEL PER													+-		Ast	estos (p	resence/absenc	ce) ————				1
ADL NEV	ADL NEW																	·		<u> </u>			P : +61 2 9900 8400 5 : EnviroSempleNSW@eurofins.com.au
DAR	V DAR)	rofins.com.au
Date	Date																						SSC NOW ZOOD
	(6,/0/																-		 -			P	
-	0/21													ļ							Project Ne	Project Manager	☐ Eurofins { mgt Brisbane Lab
Time	Time																				PS126618	Richi	
1	16																<u> </u>		<u>-</u>		6618	Richie Lamont	Unit 1, 21 Smallwood Place, Muramie, Qt.0 4172 P + +61 7 3902 4690 E : EnviroSampleQt.D@eurofins.com.au
ļ. 	100															<u></u>							Place. Muramie, QLD Deurofins.com.au
Signature	Signature																						4172
	9_										×	×	×	-	1L Plas	tic	ON	HOLD					
,	2		-												250mL Pl.	aetic		Requirements	Tip American	Email for Results	Electronic Results Format	Project Name	☐ Euro
	` -														00mL Ambe 40mLvi 25mL Ambe	al]	□ 1 DAY*				Eurofins) mgt Melbourne Lab
											×	*	×	(0)	Jar			2 5 DAY (Std.)		:hie Lamo	excel and Esdat	d bus ser	
Report Ne	Temperature													Sample Comments / DG Hazard Warning	Postal	☐ Hand Delivered	Counier (#	Other (□ _{2 DAY*}	Richie Lamont Richie.Lamont@wsp.com	dat	Red bus services Bateau Bay	2 Kingston Town Clase, Cakleigh, VIC 3186 P - +61 3 8564 5000 F - +61 3 8564 5090 E : EnviroSempleVic@eurofins.com.au
	150					•								ents / DG Haz		îvered	8f (#	*Sun		.Lamont@		eau Bay	1C 3166 564 5090 sur
	Col													zard Warnin				* Surcharges apply	□ 3 DAY*)wsp.co			

CHAIN OF CUSTODY RECORD

⊟Eurofins | mgt Sydney Lab Unit F3 Buiding F. 16 Mars Road, Lane Cove West, NSW 2056 P: +61 2 9900 8400 E: EnviroSampleNSW@euroling.com.pv

Eurofins | mgt Brisbane Lab

Unit 1, 21 Smathrood Place, Murarrie, QLD 4172 P : +61 7 3902 4800 E : EnviroSempleOLD@eurofins.com.au

☐ Eurofins | mgt Melbourne Lab

2 Kingston Town Close, Oakleigh, VIC 3156
P. +61 3 8564 5000 F - +61 3 8564 5090
E : EnviroSempleVic@eurofins.com.su

			1-	 		- 7		Ch.	4	ω	12		18			æ		လွ	Ç	6			
	ahoratory Use Only													(Time / Date)	(Signature)	Relinquished by		Special Direction	Contact Phone No	Contact Name	Addison	Aridress	Company
Received By	Received By										QA02a	QA02	Client Sample ID	10 : 00	WL	Jessica Watson			420200359	Jessica Watson	2300	Level 3/51-5	WSP Australia
	Jado													11/10/21		Ö	}			son		5 Bolton St,	lia
	のまり										7/10/21	7/10/21	Date				į					Level 3/51-55 Bolton St, Newcastle NSW	
											water	water	Matrix	(N	lote: Where	metals an	An e requeste	alysis d, please spe	cify "Total" c	or "Filltered")			Purch
SYD BNE	SYD) BNE MEL PER ADL NEW DAR																TRH				-	Eurofins mgt Quote Ne	Purchase Order
SYD BNE MEL PER ADL NEW DAR	MEL PER									•							BTEX VOCs		 .				ļ
ADL NEW	ADL NEW						-									Meta	als (8 m	etals)	~				
DAR	DAR	-															- <u>-</u>			.,,			
Date	Date																						
DL NEW DAR Date//	16/10/21	-													***************************************							Project Ne	Project Manager
Time	Time																					PS126618	Richie Lamont
	16.30									-												28	_amont
Signature	Signature										×	×				0	N HOLI						
of Confine	\neg												20	1L Plas 250mL Pt 125mL PI 00mL Ambe	astic astic			Requirements	Turn Assured	Email for Results	5	Electronic Results	Project Name
													12	40mLvi 26mL Ambe Jar			Containers	回 5 DAY (Std.)	□ 1 DAY*	Richie L			Red bus
Report No	Temperature	Please forward to ALS											Sample Comm.	Postal	Hand Delivered	Courier (#	Met		□ 2 DAY	amont Richie.		d Esdat	Red bus services Bateau Bay
Time Signature Report Ne	2097	urd to ALS			,								Sample Comments / DG Hazard Warnin		/ered		Method of Shipment	* Surcharges apply	□ 3 DAY*	Richie Lamont Richie.Lamont@wsp.cor			au Bay